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ABSTRACT

A statistical model based on canonical correlation analysis (CCA) was used to explore climatic associa-
tions and predictability of June—-August (JJA) maximum and minimum surface air temperatures (Tmax and
Tmin) as well as the frequency of Tmax daily extremes (Tmax90) in the central and western United States
(west of 90°W). Explanatory variables are monthly and seasonal Pacific Ocean SST (PSST) and the Climate
Division Palmer Drought Severity Index (PDSI) during 1950-2001. Although there is a positive correlation
between Tmax and Tmin, the two variables exhibit somewhat different patterns and dynamics. Both exhibit
their lowest levels of variability in summer, but that of Tmax is greater than Tmin. The predictability of
Tmax is mainly associated with local effects related to previous soil moisture conditions at short range (one
month to one season), with PSST providing a secondary influence. Predictability of Tmin is more strongly
influenced by large-scale (PSST) patterns, with PDSI acting as a short-range predictive influence. For both
predictand variables (Tmax and Tmin), the PDSI influence falls off markedly at time leads beyond a few
months, but a PSST influence remains for at least two seasons. The maximum predictive skill for JJA Tmin,
Tmax, and Tmax90 is from May PSST and PDSI. Importantly, skills evaluated for various seasons and time
leads undergo a seasonal cycle that has maximum levels in summer. At the seasonal time frame, summer
Tmax prediction skills are greatest in the Midwest, northern and central California, Arizona, and Utah.
Similar results were found for Tmax90. In contrast, Tmin skill is spread over most of the western region,
except for clusters of low skill in the northern Midwest and southern Montana, Idaho, and northern

Climate Research Division, Scripps Institution of Oceanography, University of California, San Diego, and U.S. Geological Survey,

Arizona.

1. Introduction

There is considerable incentive to understand and
predict the variability of regional surface air tempera-
ture. In the western United States, summer tempera-
tures, especially daily extremes, dictate electrical en-
ergy usage, affect water demand, and impact agricul-
ture and ecosystems.
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Past studies on statistical seasonal prediction of sur-
face air temperature in midlatitudes mostly used pre-
cursor sea surface temperature (SST) patterns as pre-
dictors because they tend to persist for several months
(e.g., Barnett 1981; Barnston and Smith 1996). But, in
summer midlatitudes the impact of SST fields on tro-
pospheric variables appears to be modest (Koster and
Suarez 2003). Barnett and Preisendorfer (1987) showed
that over the contiguous United States this prediction
scheme presented low skills during the summertime,
suggesting that an important part of the air temperature
variability remains unexplained. They also noted that
the persistence of local conditions, particularly in the
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western and Midwestern states, could contribute to lo-
cal temperature prediction during summer.

Huang and Van den Dool (1993) and Huang et al.
(1996) found that soil moisture and precipitation have
an impact on the next month’s near-surface air tem-
perature in summer. Huang et al. (1996) found an in-
verse correlation between soil moisture and surface air
temperature in the interior United States that enhanced
the temperature persistence during warm season
months and concluded that soil moisture is a better
(local) predictor than precipitation, probably because
soil moisture persists longer. Recent works (e.g., Durre
et al. 2000; Van den Dool et al. 2003; Mo 2003) include
soil moisture indicators to study the temperature pre-
dictability at several days to seasonal time scales over
the contiguous United States. Numerical ocean—land-
atmosphere climate models also include soil moisture in
predicting continental temperature and precipitation
(Koster et al. 2000; Koster and Suarez 2003; Yang et al.
2004). Douville (2003) explains that, because of the
strong evaporation—precipitation feedback, interannual
fluctuations of soil moisture over the interior North
America contribute to the predictability of temperature
in the lower troposphere during summer.

Most of the studies cited in the previous paragraph
focused on average summer temperature, except for
Durre et al. (2000), which investigated summertime
daily maximum temperature and their extremes. How-
ever, because the atmospheric surface layer and its at-
tendant mechanisms are quite different during day and
night, we are motivated to consider if the climatic link-
ages and predictive skill differ for maximum tempera-
ture (Tmax) versus those for minimum temperature
(Tmin). Additionally, the set of users and applications
requiring forecasts of Tmax may be quite different from
those for Tmin. Although fluctuations in Tmax and
Tmin are significantly correlated, the variability of
Tmax is larger than that of Tmin for nearly all locations
during nearly all seasons (Fig. 1). This is especially true
in summer, when the mean standard deviation of Tmax
is approximately 30% larger than that of Tmin. As will
be brought out, the predictive linkages and patterns
associated with these two variables have some impor-
tant differences.

The goal of this paper is to quantify and understand
the predictability of continental maximum and mini-
mum surface air temperature during summer over a
broad midlatitudinal region covering the central and
western half of the United States. We also consider
predictability of seasonal frequency of daily Tmax ex-
tremes. Based on results from previous studies, we em-
ploy Pacific SST (PSST) and a soil moisture index, the
Palmer Drought Severity Index (PDSI), to predict
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FiG. 1. Standard deviation (°C) mapped for (top) Tmax and
(middle) Tmin for summer (JJA) daily data from 1950 to 2001.
Contours are every 0.5°C. (bottom) Average over the entire do-
main of the standard deviation (°C) of Tmax (solid) and Tmin
(dashed) for each season.



15 APriL 2006

maximum and minimum temperatures. Our analysis fo-
cuses on the summertime, but for comparison also ex-
amines other seasons. The paper is organized as fol-
lows. After a description of the data used in the next
section, section 3 describes the methodology. Variabil-
ity of Tmax and Tmin is discussed in section 4. Speci-
fication of temperature from PSST and PDSI is de-
scribed in section 5, including diagnostic analysis and
the prognostic models as well as the seasonal cycle of
field-averaged skill (FAS). Results for temperature
prediction are presented in section 6, including com-
parison of predictive skill in summer with that obtained
for other seasons. Finally, the summary and conclusions
are presented in section 7.

2. Data

Each of the datasets employed covered the common
time period 1950-2001. The predictands were formed
from surface air temperature records from the National
Climatic Data Center (NCDC) first-order and coopera-
tive observer summary of the day dataset, known as
DSI-3200 (NCDC 2003). These data were used and de-
scribed recently over the contiguous United States by
Groisman et al. (2004). From DSI-3200, 711 stations
were preselected with 1% or less missing data in their
maximum and minimum temperature records (Tmax
and Tmin, respectively) over the central and western
half of the contiguous United States (25.0°-50.0°N,
89.5°-124.5°W). The domain considered includes por-
tions of the Midwest and south-central and southern
states, the Great Plains, and all 11 of the western moun-
tainous states. This domain, while focusing on the West,
facilitates comparison with previous studies of air tem-
perature predictability (e.g., Barnett and Preisendorfer
1987; Huang et al. 1996; Koster and Suarez 2003; Mo
2003). The full set of stations was decimated to produce
an array of stations that were separated by a radial
distance of 0.7° or more, obtaining a subsample of 350
stations (circles in Fig. 1). This decimation alleviated a
sampling bias toward higher density of stations in the
eastern part of the domain. Three predictand variables
were considered, including seasonally averaged Tmin
and Tmax, and the seasonal frequency of daily Tmax
extremes (Tmax90) defined as the frequency of daily
Tmax warmer than the 90th percentile of the local sum-
mertime climatology of daily Tmax.

Two datasets were used as predictor fields. First, Pa-
cific basin (7.5°S-62.5°N, 112.5°E-82.5°W) SST anoma-
lies on a 5° X 5° grid are from the optimally interpo-
lated statistically homogenous concatenation of Kaplan
et al. (1998) and Reynolds and Smith (1994) analyses
obtained from the International Research Institute for
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Climate Prediction (IRI). Second, 194 National Cli-
matic Data Center Climate Division PDSI (Palmer
1965; Alley 1984; Heddinghaus and Sabol 1991; Heim
2002; Lawrimore et al. 2002) time series cover the cen-
tral and western United States (circles in Figs. 3d,e.f
represent the centroid of these climate divisions). Here-
inafter these datasets are referred to as PSST and PDSI,
respectively. PDSI is a commonly used and reasonably
good measure of soil moisture and other hydrological
conditions at the land surface (Dai et al. 2004). Durre et
al. (2000) noted that the relationship between soil mois-
ture and the subsequent monthly temperature is robust
with respect to both the analysis method and the soil
moisture parameter used, including PDSI. A detailed
description of the PDSI formulation can be found in
Heim (2002) and Shabbar and Skinner (2004).

3. Methodology

Following the statistical approach described by Ger-
shunov and Cayan (2003), canonical correlation analy-
sis (CCA) is used here to match patterns in the predic-
tor fields with patterns in the predictand field. This
methodology is employed in both the specification
(contemporaneous) and the prediction (time lagged)
experiments. In this approach, CCA relates the con-
temporaneous and/or antecedent observations of the
predictor fields (PSST and/or PDSI) to the observed
seasonal values of daily Tmax, Tmin, and Tmax90
fields. One underlying hypothesis is that Pacific SST
anomaly patterns force large-scale atmospheric circula-
tion, which influences local surface air temperature
anomalies. A second hypothesis is that local tempera-
ture variability is modulated by soil moisture through
the interplay between latent and sensible heating from
the land surface (Mo 2003). The resolved PSST and
PDSI anomalies span a range of variability, from sea-
sonal to interannual to multidecadal time scales.

The statistical prediction approach (see Gershunov
and Cayan 2003 for details) consists of three steps.
First, the predictor and predictand fields are prefiltered
with the same number of p principal components (PCs)
each. Second, patterns of variability in the predictor
and predictand fields represented by their respective p
PCs are related to each other via g canonical correlates
derived from CCA. Finally, the optimal statistical
model is defined by considering cross-validated mea-
sures of skill for all reasonable combinations of p and q.
The optimum p and g values were chosen as the com-
bination giving the maximum average skill over the
analysis domain.

The number of modes for specification and predic-
tion models was optimized in a separate module, so the



1410

number of modes used in the specification is not nec-
essarily the same as the number of modes used in the
prediction. It is important to note that the optimal p—¢q
model is approximate, because the p and g values are
selected from a rather smoothly varying surface of
model performance. Similar-complexity models from
nearby p—q pairs will give approximately the same pre-
dictive skill. In practice the number, p, of patterns and,
q, of relationships selected ranged from 2 to 17. Be-
cause all skill calculations are cross validated, the re-
sults should provide realistic estimates of temperature
forecast skill obtainable using linear combinations of
PSST and/or PDSI predictors.

4. Variability structure

To explore relationships of Tmax and Tmin with lo-
cal soil moisture variability, represented by PDSI, si-
multaneous June—August (JJA, hereafter 3-month pe-
riods are denoted by the first letter of each respective
month) correlations were calculated between Tmax and
Tmin, Tmax and PDSI, and Tmin and PDSI (Fig. 2). As
expected at seasonal time scales, correlations between
Tmax and Tmin yield positive values for practically all
stations (Fig. 2a), although some regions exhibit much
stronger correlations than others, reinforcing the no-
tion that different local mechanisms may be at play
during daytime than during nighttime.

A consistent pattern of negative correlation is ob-
tained between Tmax at stations and their nearest Cli-
mate Division PDSI time series (Fig. 2b), indicating
that dry conditions tend to be accompanied by higher
maximum (day time) temperatures, and vice versa
(PDSI describes drought severity with increasing mag-
nitude in the negative direction). This association is
strongest over most states in the eastern part of the
domain and near the junction of Idaho, Wyoming,
Utah, and north-central Montana. The central United
States was identified by Huang et al. (1996) and Koster
and Suarez (2003) as a region of maximum variability in
summer soil moisture and evaporation, perhaps an in-
dication of a strong land surface influence on surface air
temperature. Mo (2003) found that this region is asso-
ciated with the largest mean temperature variability in
the United States.

The analogous map of correlations for Tmin with
PDSI (Fig. 2¢c) also shows a pattern of negative corre-
lations, but the absolute values are mostly smaller than
those obtained for Tmax. These results show that in
spite of positive summer correlation between Tmax and
Tmin, anomalous PDSI explains more local variance of
Tmax than of Tmin. Results from Fig. 2 are consistent
with those of Durre et al. (2000), who stated that “re-
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FiG. 2. Simultaneous JJA correlations between (a) Tmax and Tmin,
(b) Tmax and PDSI, and (c) Tmin and PDSI. Station temperatures
were correlated with PDSI at the nearest climate division. All correla-
tion patterns are displayed in color on the common scale (—1: violet; 1:
dark red). Zero contours are thickened. Correlations are also displayed
as contours at 0.2 intervals. Negative contours are dashed, and positive
are solid. Small circles represent station locations.
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FiG. 3. First three CCA modes of JJA Tmax with PDSI. Time series of the first three CCA modes: predictor (solid) and predictand
(dashed); the correlations between the series are (a) 0.89, (b) 0.86, and (c) 0.77. (d), (e), (f) Spatial patterns of PDSI predictor fields
and (g), (h), (i) Tmax as predictand are displayed as correlations of the CCA mode time series with their respective variable fields at
each location represented by the small circles (i.e., climate division for predictors and station for the predictand). Correlation values
are represented by color scale (—1: violet; 1: dark red), and by contours (0.2 intervals) with zero contours thickened. Negative contours

are dashed, and positive are solid (avg. var. means the average variance).

sults for warm-season months indicate that, particularly
for inland nonarid areas, a wet soil tends to depress the
concurrent and subsequent monthly mean temperature,
while a drier-than-normal soil is favorable for higher-
than-expected monthly mean temperatures,” but since
evapotranspiration occurs primarily during the day, “it
follows that daytime temperatures should be more sen-
sitive to variations in soil moisture than nighttime tem-
peratures.” This daytime-versus-nighttime asymmetry
is clearly verified by Fig. 2.

5. Specification analysis

a. Simultaneous summer patterns

Before examining skill, we use CCA in a diagnostic
mode to examine JJA simultaneous patterns relating

PSST and/or PDSI to Tmax or Tmin. Diagnostic CCA
analysis suggests that summer Tmax variability is
mainly driven by contemporaneous soil moisture con-
ditions over the central and western United States,
while Tmin variability is better explained when PSST
and PDSI fields are used jointly. These results are il-
lustrated in Figs. 3-4 (we show only the first three
modes in Figs. 3, 4, 7, and 8 because the spatial struc-
tures associated with the less correlated higher-order
modes become progressively less spatially coherent).
Figures 3a,b,c show the first three leading CCA
modes of PDSI and Tmax. Negative PDSI correlations
(Figs. 3d,e,f) are in local agreement with positive Tmax
correlations (Figs. 3g,h,i). From the three modes plot-
ted, the second mode shows the greatest PDSI (Tmax)
average variance with a lobe of high negative (positive)
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FI1G. 4. First three CCA modes of JJA Tmin with PSST and PDSI. Time series of the CCA modes: predictor (solid) and predictand
(dashed); the correlations between the series are (a) 0.86, (b) 0.77, and (c) 0.76. Spatial patterns of (d), (e), (f) PSST and (g), (h), (i)
PDSI predictor fields and (j), (k), (1) Tmin as predictand are displayed as correlations of the CCA time series with their respective
variable fields at each location (i.e., grid cell or climate division for predictors and station for the predictand, with these last two
represented by the small circles). Correlation values represented by color scale (—1: violet; 1: dark red), and also as contours at 0.2
intervals, with zero contours thickened. Negative contours are dashed, and positive are solid (avg. var. means the average variance).

correlations over the southeastern states of our domain.  strongly biased toward higher or lower maximum tem-
The spatial concordance and negative correlation be- peratures. Durre et al. (2000) explain this association by
tween PDSI and Tmax patterns is consistent with the a feedback in which “a depletion in the amount of wa-
local correlations in Fig. 2b and indicates that mecha- ter in the soil that is brought about by a deficit in pre-
nisms conducive to dry or wet conditions are very cipitation causes the rate of surface evapotranspiration



15 APriIL 2006

to decrease.” The reduced evapotranspiration favors
the sensible heat flux, “which requires a warmer surface
and planetary boundary layer. The higher tempera-
tures, in turn, tend to enhance the drying of the soil and
lower atmosphere ... particularly during summer,
when the surface latent heat flux tends to be large.”

The leading three modes of jointly considered PSST
and PDSI and Tmin are presented in Fig. 4. From the
three modes plotted (Figs. 4a,b,c), the average variance
of the first mode associated with PSST (Fig. 4d) is
higher than the one associated with PDSI fields (Fig.
4g). It shows the greatest Tmin average variance with a
robust positive Tmin correlation pattern at longitudes
east of 110°W (Fig. 4j). In contrast to the first mode, the
correlation patterns of Tmin associated with the second
and third joint PSST and PDSI modes (Figs. 4k.1) re-
semble the PDSI-only modes (not shown for Tmin)
(Figs. 4h and 4i, respectively). The average variance of
the Tmax modes that can be attributed to PDSI was
also higher than the variance attributed to PSST (not
shown). However, Tmin correlation patterns suggest
that both PSST and PDSI fields contribute strongly to
explain the Tmin variance.

b. Simultaneous models of Tmax and Tmin
variability

The summer specification skill of the CCA models is
presented in Fig. 5, which shows maps of the cross-
validated correlations between observed and statisti-
cally estimated JJA Tmax and Tmin. We notice from
Figs. 5a,b that PDSI and PSST and PDSI explain a
significant portion of the summer Tmax and Tmin vari-
ability, respectively. For both Tmax and Tmin, the
model estimates have a statistical significance greater
than the 99% confidence level. Some important differ-
ences appear though, for example, Tmax has lowest
skill in the interior southwestern states, while Tmin has
lowest skill in the interior north-central portion of the
domain. The low Tmax skill region (Fig. 5a) coincides
with the area affected by the southwest monsoon that
can influence summer PDSI and reduce its local cou-
pling with Tmax (see also Fig. 2b). The region of low
Tmin (Fig. 5b) over the mountainous West is decoupled
from remote SST influences as well from local PDSI
(see also Fig. 2c).

To compare the summer season results with other
periods of the year, the Tmax and Tmin specification
and prediction model calculations were repeated for
each of the other seasons. Field-averaged specification
skill for each season, for each of the three predictor
fields, is displayed in Fig. 6. This exercise also gener-
ated predictive model skill for each season at lags of 1,
3, and 5 months, as will be described in the next section.
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F1G. 5. JJA Tmax and Tmin specification skill expressed as
correlations between the cross-validated forecast and observa-
tions. Uncolored areas are regions of insignificant negative cor-
relations. (a) Tmax using PDSI and (b) Tmin using PSST-PDSI as
predictor field, respectively. The three contours plotted surround
and represent the 90th, 95th, and 99th percent levels of signifi-
cance in order of increasing correlations.

As we mentioned in section 3, the p—q pairs for the
different CCA models were chosen as the model com-
plexity giving the maximum average skill over the
analysis domain, and it is not necessarily the same as
that for the summer case.

Figure 6 shows some important differences between
Tmax and Tmin, regarding their PSST and PDSI link-
ages. For Tmax, during the period from spring to early
fall (from FMA to ASO), the average skills are very
similar from models that included PDSI-only or PSST
and PDSI predictors. Furthermore, Tmax skills from
the PSST-only models are lower. This indicates that
during the warm season at zero time lag, local effects
associated with the availability of soil moisture rather
than remote or indirect effects from PSST are the dom-
inant control of Tmax variability. This result is consis-
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skill. They are shown as the field-average skill (FAS) from the
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periments for 1-, 3-, and 5-month lead times before the beginning
of the MAM, JJA, SON, and DJF seasons.

tent with Huang et al. (1996), who found that warm
season months produced the highest correlations be-
tween lagged soil moisture and station Tmax. Local
control and seasonal variability of Tmax associated
with soil moisture can be explained through the Del-
worth and Manabe (1988, 1989) studies. They showed
that soil moisture contains variance on seasonal to in-
terannual scales and that an increase (decrease) of soil
moisture tends to increase (decrease) the latent heat
flux and therefore atmospheric moisture, while de-
creasing (increasing) the sensible heat flux, and there-
fore air temperature. This scheme is especially valid for
seasons and nonarid locations where the ratio of poten-
tial evaporation to precipitation is greater than one and
there is ample energy for the removal of moisture from
the surface by evaporation (see also Durre et al. 2000).
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The results here indicate that in seasons from SON to
JFM, both large scale and local forcings (PSST and
PDSI) contribute to the variance of Tmax fields. Better
skill was generally obtained using PSST and PDSI fields
during fall and winter for Tmax predictions. Seasonal
differences in the large-scale (i.e., SST) control on
Tmax stem from the following facts: (a) tropical tele-
connections are strongest in the winter hemisphere; (b)
ENSO phase evolution is characterized by a distinct
seasonal cycle; and (c) North Pacific transient cyclone
and anticyclone activity, related to large-scale Pacific
SST patterns, is more vigorous and penetrates deeper
inland during winter.

The results demonstrate that Tmax can be specified
with a higher degree of skill than can Tmin for all sea-
sons of the year (Fig. 6b). During MAM-JAS the high-
est Tmin specification skills were obtained when PSST—
PDSI fields were used as predictors, but notice that the
difference between Tmin average skill values using
PSST or PDSI is not as great as those obtained for
Tmax during these seasons. This suggests that night-
time temperatures are controlled by local and large-
scale factors during spring and summer in the central
and western United States. For the remainder of the
year, ASO-FMA, Tmin specifications are mostly con-
trolled by PSST. Low skill obtained from PDSI-only
predictors during fall and winter indicates that the in-
fluence of soil moisture on Tmin predictions becomes
minimal during the cool season. During the cool season,
soil moisture’s influence on Tmin is less important than
in the warm season, probably because humidity and,
therefore, greenhouse trapping, is more associated with
advection than local evaporation.

6. Predictive relationships

The same procedure as for the contemporaneous
linkages was applied to examine predictive skill at one
month to several months time lead. The field-averaged
skills for time leads of 1, 3, and 5 months before the
beginning of the MAM, JJA, SON, and DJF seasons
are shown in Fig. 6. For each of the time leads, JJA
Tmax and Tmin were better predicted by PSST and
PDSI fields than from either individual predictor field.

a. Lagged patterns

Figures 7a,b,c show the first three leading modes of
May PSST and PDSI and JJA Tmax. Notice that PSST
average variance associated with the two first modes is
low when compared with the third mode (Figs. 7d,e,f).
The first mode shows the greatest Tmax average vari-
ance with two lobes of opposite sign pivoting around
105°W. This pattern also resembles the PDSI correla-
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FiG. 7. Same as in Fig. 4, but for JJA Tmax with May PSST-PDSI. The correlations between the series are (a) 0.75, (b) 0.74, and
() 0.68.

tion in Fig. 2. To determine if the leading predictor
modes are associated with known large-scale features,
they were correlated with May values of prominent in-
dices of climate variability, such as the Pacific decadal
oscillation (PDO) and Nifio-3.4. Modes 1 and 2 of
PSST-PDSI did not exhibit any substantial correlations
with those indices (Table 1a), supporting the previous
results that Tmax is mostly controlled by local land

surface characteristics. Mode 3 had a correlation of 0.75
[statistical significance of 99%, according to Ebisuzaki
(1997)] with the May PDO index. PDO is the dominant
mode of anomalous SST variability in the extratropical
North Pacific (Mantua et al. 1997). This result indicates
that the coupled variability between JJA Tmax and
May climate is in part due to low-frequency modes such
as the PDO. However, little Tmax variability is ex-
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TABLE 1. Correlations between the PSST-PDSI modes plotted
in (a) Fig. 7 and (b) Fig. 8 and the described index values observed

in May for 1950-2001.

Index
(a) Mode PDO Nifio-3.4
1 —0.05 0.19
2 -0.29 -0.21
3 0.75%: 0.30%*
Index
(b) Mode PDO Nino-3.4
1 —0.61%* -0.24
2 —0.49%* —0.25%
3 —0.14 —0.56%*

* Has a statistical significance greater than 95% level according
to Ebisuzaki (1997).
** Has a statistical significance greater than 99% level.

plained by this mode (Fig. 71); it seems to mainly ac-
count for the coastal versus inland Tmax gradient prob-
ably mainly through the near-coast SST expression of
the PDO. Although the associated PDSI pattern is
strong (Fig. 7i), it does not account for local Tmax pre-
dictability. This is probably because (a) local persistent
PDSI conditions are not strongly correlated with Tmax
in this southwestern desert and mountainous region
(Fig. 2b) and (b) PDSI May —-JJA persistence may be
weak there due in part to the influence of the south-
western monsoon.

The results obtained for JJA Tmin from May PSST-
PDSI predictors (Figs. 8a,b,c) are different from those
obtained for JJA Tmax. The PSST correlation map of
the leading mode resembles the PDO structure (Fig. 8d,
cf. also with Fig. 7f) and has a correlation with May
PDO index of —0.61 (Table 1b; statistically significant
at the 99% level). In contrast to the Tmax results (Fig.
71), the first Tmin mode displays weak correlations with
PDSI. The greatest Tmin variance explained is repre-
sented by a lobe of positive correlation in the central
southwest of the domain (Fig. 8j). The second Tmin
mode has stronger correlations with PDSI; the high
PDSI average variance portrayed in Fig. 8h has a simi-
lar spatial structure as Fig. 7i but is locally stronger
around the Four Corners region where it couples
strongly with subsequent summer Tmin variability. The
third Tmin mode has a correlation with Nifio-3.4 index
of —0.56 (Table 1b; significant at 99%) and is associ-
ated with the greatest PSST variance of the three
modes plotted (Fig. 8f). The associated PDSI spatial
dipole pattern anticorrelates locally with subsequent
summer Tmin (Figs. 8i,1) explaining significant variance
in the extreme southwest and the southern Great
Plains.
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b. Prognostic models: Predictability at 1 to 5
months

To directly explore summertime temperature pre-
dictability based on the kinds of climatic couplings ex-
emplified in section 6a, summer Tmax skill (i.e., cross-
validated correlation coefficient between prediction
and local observation) is mapped for CCA models us-
ing antecedent May PSST and/or PDSI predictors (Fig.
9). Much of the predictability that extends from Cali-
fornia to the interior western north and central domain
(Fig. 9a) is mainly due to PSST (Fig. 9b) and to a lesser
extent to PDSI fields (Fig. 9¢c). Similar skill maps were
obtained by Barnett and Preisendorfer (1987) for June
mean temperature prediction based on persistence and
also for August mean temperature predicted from an-
tecedent PSST. The region of relatively high skill over
the Midwest and Plains states in the study conducted
here is mainly associated with PDSI, while PSST
contributes very little predictability. This is consistent
with the results of Mo (2003), who also found maximum
summer mean temperature predictability over Texas
and Oklahoma using antecedent soil moisture predic-
tors. Douville (2003) illustrates that variability of lo-
cal surface evaporation plays a significant role in the
lower-troposphere energy budget in the interior of the
United States. The Midwest, Great Plains, and Rocky
Mountain states were identified by Durre et al. (2000)
as regions in which the probability of warm Tmax is
significantly elevated during dry spells. The interior
northwestern and west south-central states retain sig-
nificant JJA Tmax predictability using March PSST
and PDSI predictors (map not shown). Again the
first mode mainly related to PSST and the second
mode mainly related to PDSI. For the rest of the area,
skills are relatively weak for the March prediction mod-
els.

Prediction skill maps for JJA Tmin fluctuations are
presented in Fig. 10. In contrast to Tmax, which fea-
tured maximum sKkill in California, most of the Pacific
Coast region is well predicted (Fig. 10a) from May pre-
dictors. There is also relatively high Tmin skill in the
North American monsoon region (e.g., Higgins et al.
2003) using May PSST and PDSI predictors. The Tmin
skill in the monsoon region is similar to that found for
mean temperature by Mo (2003) using winter and
spring SST predictors. In the present case, May PSST
appears to be the main contributor to skill of JJA Tmin
fluctuations (Fig. 10b), but PDSI also contributes in a
scattered fashion to skill within the regions described
above (Fig. 10c). Testimony to the powers of persis-
tence, March, April, and even January PSST and PDSI
predictors account for similar predictability as do the
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same predictors in May (Fig. 6b; maps not shown). Con-
trasting Figs. 10a and 9a, we notice that Tmin predic-
tion has a rather robust pattern of positive and signifi-
cant skill over a broader area than Tmax. These results
agree and support the ones shown in Fig. 6 for JJA
Tmin average skill, in which the inclusion of PSST pre-
dictors extended the memory of Tmin predictions (Fig.
6b). Mo (2003), found that mean temperature average
skill tends to increase with SST lead time. We found

-110

100 -90 120 110 -100  -90

this for Tmin but not in a consistent way for Tmax, as
will be commented on later in this section.

Our average skill values for all PSST and PDSI pre-
dictor lags in the JJA Tmin prediction (~0.30, Fig. 6b)
are comparable with those obtained for average tem-
perature by Mo (2003) using a somewhat different lin-
ear ensemble canonical correlation methodology that
included global SST, Northern Hemisphere sea level
pressure, and seasonal model-estimated soil moisture
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over the conterminous United States. In our results for
JJA Tmax predicted from May PSST and PDSI, skill
levels are similar to those found for Tmean by Mo
(2003), but evidently the soil moisture influence upon
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Tmax erodes more quickly with lead time than for
Tmean or Tmin, as skill levels decay significantly for
time lags of 3 and 5 months.

In comparing summer temperature specification and
prediction with the other seasons, some interesting fea-
tures emerged (Fig. 6). At time lags up to 3 months, soil
moisture appears to influence Tmax and to some extent
Tmin during a broad “season” from April through Oc-
tober. Interestingly, the highest predictive skills that
emerged for these shorter time lags were for the spring
(MAM) portion of this record. This seems to agree with
findings of Van den Dool et al. (2003), who also found
that MAM is the best predicted U.S. Climate Divisions
mean temperature season.

Contemporaneous associations were especially
strong for Tmax, with explanatory power almost en-
tirely provided by PDSI; evidently this reflects rather
strong coupling between the land surface and the sur-
face air temperature, consistent with previous studies of
mean temperature predictability by Huang et al. (1996)
and Mo (2003). At time leads beyond 3 months, the
influence of anomalous land surface characteristics falls
away, but the more distant teleconnective influences of
PSST persist at levels that are nearly the same as for
1-month predictions. An indication of the seasonal na-
ture of the land surface influence is the fact that during
cold seasons, most skill is obtained from the PSST pre-
dictors. This is coherent with Mo (2003), who found
that the main sources for temperature prediction during
winter are decadal PSST signals and ENSO. When both
PDSI and PSST predictor fields are included, spring
and summer Tmin can be better predicted than Tmax
for long lead times.

¢. Results for summer frequency of daily Tmax
extremes

A summary of predictability and specification results
for the frequency of very hot summer days (JJA
Tmax90) is shown in Fig. 11. These results support and
echo those for JJA Tmax in that the highest skill values
are achieved using either PDSI or PSST and PDSI pre-
dictors at short lead times and also that the importance
of PSST predictors increases with lead time. The latter
result is also similar to that found for Tmin. For all lead
times and predictors, somewhat better skill results were
obtained for Tmax when compared with Tmax90. This
is natural: extremes are typically more difficult to pre-
dict than the means. However, at 1-month lead time
with PDSI as sole predictor, predictability of Tmax90 is
almost identical to that of Tmax in both spatial pattern
and skill magnitude (Fig. 9¢c). This result is encouraging,
as many practical applications require skillful seasonal
forecasts of extremes, not only the means. Among such
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sets of predictor fields. (b) Tmax90 prediction skill expressed as
correlations between the cross-validated forecast and observa-
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The three contours plotted surround and represent the 90th, 95th,
and 99th percent levels of significance in order of increasing cor-
relations.

variables, frequencies of hot days in summer are espe-
cially important for energy, health, and ecological ap-
plications.

7. Summary and conclusions

Even though anomalous climate patterns are stron-
ger and broader in scale in winter than in summer,
summer surface air temperatures over the central and
western portion of the United States appear to be more
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predictable than those in winter. One reason for this
important distinction is that, in addition to large-scale
climate patterns, local soil moisture conditions provide
a source of temperature (especially daytime tempera-
ture) predictability in summer. Therefore, two dis-
tinctly different variables, the Palmer Drought Severity
Index (PDSI) and Pacific sea surface temperature
(PSST), were explored using cross-validated, optimal-
mode canonical correlation models for seasonal climate
prediction. We found that PDSI and PSST provide use-
ful skill in explaining and predicting the variability of
summer temperatures at seasonal time leads. Impor-
tantly, PDSI and PSST have somewhat different influ-
ences upon Tmax and Tmin. Quite strong negative cor-
relations occur between anomalous PDSI and Tmax
locally, an indication that increased soil moisture and
probably also cloudiness produce lower daytime tem-
peratures. PDSI and Tmin are negatively correlated,
but at considerably lower levels. Large-scale and re-
mote climate conditions exert their influence on sum-
mer temperature variability and predictability in the
central and western United States mainly through
nighttime temperature.

Our linear statistical results indicate that, at a few
months time leads, summer Tmax and Tmax90 predict-
ability is controlled mainly by local effects, while the
predictability of Tmin is related to both local and large-
scale effects. For Tmax, soil moisture has the greatest
influence especially in the Great Plains and other inte-
rior regions. For Tmin, PDSI contributes to predictive
skill, but remote influences of PSST also come into
play. The PDSI influence on Tmax is relatively strong
in spring, summer, and early fall, but not in winter.
PSST tends to have relatively greater influence (than
PDSI) as time leads are increased and during cool sea-
son months. Douville (2003) and Van den Dool et al.
(2003) suggest that although soil moisture is the main
land surface parameter affecting the interannual vari-
ability of the summer atmosphere, a proper evaluation
of its predictability role can only be made when the
variability of the SST is also considered.

As in Mo (2003), our study suggests that SST and
PDSI both account for mean temperature predictability
but we show that they have different influences upon
daytime (Tmax) and nighttime (Tmin) temperatures,
and they have different regional expressions. Usually
the best field average skill is obtained when using both
predictors. At monthly time lead, summer Tmax pre-
dictive skill is strongest in regional clusters in the pre-
viously recognized Southern Plains area of Texas,
Oklahoma, and Missouri, but also in California and
from Nevada northeastward to South Dakota. Al-
though the strongest soil moisture influence on daily
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maximum temperatures occurs in the interior portion
of the western domain, this local influence occurs
throughout most of the West. In contrast to that for
Tmax, predictive skill for Tmin is more spatially wide-
spread, with comparable influence exerted by PDSI
and PSST.

Including PDSI to SST-based predictive models is
more important for warm (April through October) than
for cool (November through March) seasons, but the
skillfully predictable regions found for Tmax are not
necessarily coincident with those for Tmin. This inves-
tigation of the variability of Tmax and Tmin separately
sheds light on the sources of predictability for average
temperature examined by Mo (2003). For example,
Tmin predictability over the southwestern monsoon re-
gion is associated mainly with PSST variability, while
most of the Tmax predictability that is centered over
the Plains region is associated with PDSI variability. In
contrast to the PSST connection to Tmin, which ap-
pears to operate through the involvement of remote
atmospheric teleconnections, the PDSI influence upon
Tmax seems to operate locally or regionally via land
surface processes.

Importantly, high-frequency extreme temperature, in
this case the seasonal frequency of daily Tmax above
the 90th percentile of the climatological JJA Tmax dis-
tribution (Tmax90), also exhibits predictive skill. This
skill is comparable in spatial pattern and magnitude to
that of average summertime Tmax skill achieved at
monthly lead times. Like seasonal average Tmax, sum-
mertime frequency of extremely hot days (Tmax90) is
mainly controlled by local soil moisture (PDSI) influ-
ences. At increasing lead times, remote large-scale cli-
matic conditions play an ever-increasing predictive
role. In any case, the demonstrated predictability of
Tmax90, an important variable for numerous applica-
tions, gives us increased confidence in the practical use-
fulness of the seasonal predictability results described
here.

Applications of the results for Tmax90 and Tmax are
particularly important, because summer peak energy
occurs in response to heavy loads from air conditioners,
pumping water and other daytime temperature issues.
Applications of the results for Tmin may be relevant to
ecosystem and agricultural concerns. Cooler-than-
average temperatures in spring or early summer could
affect the planting or production of several crops, for
example, wheat, sorghum, oats, and barley. These re-
sults indicate that more information is obtained for ap-
plications to the utility sector when Tmax and Tmin are
considered separately rather than lumped into a mean
temperature forecast. The results provide optimism
that there may be predictability in other middle-lati-
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tude regions, because the land surface influence is local,
and thus there should be some skill derived from soil
moisture memory. Unfortunately, few world regions
outside of the Pacific sector could benefit from climatic
predictability due to large-scale teleconnections be-
cause most climate modes are not as predictable or
persistent as ENSO and PDO.
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