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Chapter 1: Improved Prediction of “Tariff Days” To Support  
SDG&E’s Price Responsive Load Response Program and  

The Economic Benefit 
1. Background 

San Diego Gas and Electric Company (hereafter SDG&E) is a part of Sempra Energy Utilities, the 
umbrella for Sempra Energy’s regulated energy distribution business units. Sempra Energy (NYSE: SRE) 
is a Fortune 500 energy services holding company based in San Diego. SDG&E is a combination natural 
gas and electric utility that serves much of San Diego County and a small portion of Orange County, 
California. SDG&E has $1.5 billion electric revenues, of which, $649 million comes from the residential 
market, $632 million from the commercial market and $161 million from the large commercial/industrial 
market. There is little industrial load in San Diego County; about 1.1 million residential electric 
customers; 133,000 commercial; and 427 large commercial/industrial customers. Of the total SDG&E 
generating assets, 3,609,624 comes from nuclear power at San Onofre Nuclear Generating Station 
(SONGS). SDG&E has about 1,504 pole miles of transmission. Figure 1-1 presents an illustration of the 
monthly peak load for SDG&E. 

Exhibit 2.  Monthly Peak Loads for SDG&E, 2002
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Figure 1-1. SDG&E Monthly Peak Loads, 2002 
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Service Territory 

 
Figure 1-2. Service Territory of SDG&E 

The Peak Load Reduction Program  
SDG&E, along with other statewide utilities, are completing a pilot demonstration project to evaluate 

the effectiveness of tariff events on the residential load. Over 2,500 customers statewide are participating 
in this project with four different rate structures applicable: variable, fixed hours, time of use (TOU) rate, 
and information only (IO) programs. In San Diego, only the variable rate treatment applies. Whereas in 
the Bay area, fixed, TOU and IO programs apply. These statewide pricing and load control incentives 
need accurate forecasts of warmer than normal temperatures on a 3-7 day-ahead basis. This information is 
used to schedule and dispatch load tariff events and to evaluate the effectiveness of these events in 
developing elasticity results for the system. Presently they are using temperature alone. In many cases, it 
is the humidity that contributes to the greatest error. Residential customers are issued a signal that day or 
a few days ahead and it is up to them as to how to reduce load during these period when higher electricity 
rates (5 to 10 times higher) go into effect. The threshold temperature of 91 degrees Fahrenheit at Miramar 
triggers the “commercial” customers automatic rate increase. Recently, the Public Utilities Commission 
(PUC) ordered tariffs for commercial customers with reduction targets of 30 MW to be signed up for this 
year (2004) and a reduction of 80MW projected for next year (2005). The residential tariffs have no set 
targets as at the time of writing (April 2004). Based on the outcome of these pilot programs, the “real 
rate” of response residential electric users will be established in the coming year. SDG&E needs to 
develop skill in “calling” these weather-related events, and influencing customer behavior. While the 
current pilot is for summer peak temperatures, a similar process could be developed for consecutive cold 
days in winter.  

The Statewide Pricing Pilot (SPP) study was a result of a California Public Utilities Commission 
(CPUC) Rulemaking issued June 2002 (R.02-06-001). The purpose of the rulemaking is to formulate 
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comprehensive policies to develop demand flexibility. One of the primary objectives is to provide options 
for customers to respond to dynamic retail prices. The pilot has various tariffs that typically have a critical 
peak period price. The critical peak price is overlaid on a time of use pricing structure and the critical 
peak price is in effect during critical peak events. The tariffs allow for 15 critical peak days (12 summer 
and 3 winter). The SPP Dispatch Team calls or “triggers” the events. Most events are triggered on “quasi” 
peak days, which are generally warmer than average days. The team must rely on accurate 3-4 day 
weather forecasts to facilitate declaring an event. Issues surrounding inaccurate weather forecasts are: 1. 
Loads are not available for demand reduction (too cool, nothing to reduce) – they waste one of only 12 
events for load analysis. 2. Loads are high, system is constrained and/or peaking and they do not call an 
event based on an inaccurate weather forecast (too low) – as they miss out on a good estimate of load 
reduction and future potential for load reductions. 

Costs to the company are difficult to estimate: currently (April 2004) SDG&E are concerned with 
formulating a good econometric model to estimate price elasticities. This may impact full-scale rollout of 
new tariffs. In future there may be demand reductions that would be known and only obtained when hot 
weather and peak loads occur. Normal weather will not yield the same results; the difference between the 
two could result in a high financial transaction cost to the company. 

The Case Study Demonstration Project  
As noted above, SDG&E participates in a statewide load control experiment. This increases price 

signals to customers thereby giving customers an incentive to shed load during critical peak times of up to 
15 periods a year (12 summer and 3 winter). The experiment has been “hit or miss” when applying the 
current weather forecast information to decisions calling for a critical peak-pricing, load-shedding event. 
The scheduling of the critical peak price activity often occurs when loads are not maximized or the 
forecast does not indicate a peak load event and one, in fact, occurs. A large part of the load variation in 
this region is driven by weather variability, so it is desirable to call critical peak price events during times 
when there are maximum cooling or heating requirements. This has been difficult to achieve—less than a 
20% match occurred during the summer of 2003. As mentioned above, the state has allowed for only 15 
events per year and these can only be used during a fixed time period (events can be called during a 5-
hour window—from 2 p.m. to 7 p.m. on non-holiday weekdays).  

This is similar to mismatching hydro plant use when periods of precipitation are expected – but does 
not occur. Meanwhile the commitment to run hydro generators may have been made when it may not be 
optimal to do so. 

This project’s aim is to help SDG&E better forecast with a 3-day lead-time, periods when higher or 
lower temperatures occur that signal a need for a load management event. Better coordination between 
expected weather conditions and the best periods for load control can then occur. Scripps Institute of 
Oceanography (SIO) provided the short term and intermediate forecast for SDG&E program managers 
and SDG&E will coordinate with the state concerning the timing for invoking a load control event. Also, 
better predicting these events would be helpful in planning more operational support when the power 
system is being stretched for meeting peak loads.  

A decision system will be provided to SDG&E that supports the timely decision time frame for when a 
load control event should occur, due to weather conditions. SDG&E will run and evaluate the decision 
they should make regarding when to initiate a load control event. The decision system may be an Excel 
spreadsheet where SDG&E inputs such variables as forecast temperatures and humidities at Miramar, 
ENSO indices, and when previous tariffs were called. It will then give SDG&E information on the 
likelihood of potential upcoming tariff events that they can use. An important part of the SIO work will be 
to characterize the skill of this forecast system, so that SDG&E will be able to do a correct pricing and 
time estimate of the product. Essentially, SIO provided SDG&E a decision system that will evaluate 
historical and current weather data and forecasts, as well as the number of events already called in a 
particular season, and give a four-day outlook for upcoming tariff event scheduling. 
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2. Case Study Objectives 
The purpose of this project was to use weather and climate information to help SDG&E better forecast 

load management events with a 3-day lead-time to allow for improved decision-making utilizing weather 
conditions to inform the optimum periods for load control. Better prediction of weather events is helpful 
when planning the operational support needed when the power system is being stretched to meet peak 
loads.  

This project involved SIO providing SDG&E program managers with 3-day lead forecasts of weather 
variables directed to the critical peak pricing tariffs. SDG&E identified the factors determining the timing 
for invoking a load control event. The objectives of the case study included: 

1. To make optimal use of available weather and climate data in forecasting the 12 summer days for 
calling load management control events to support the SDG&E pricing experiment program. 

2. To rigorously characterize the skill of the weather component of the tariff forecast system, so that 
SDG&E has the information required to properly evaluate the pricing and cost-effectiveness of 
the program.  

3. To estimate the economic value of the improved use of weather forecast information as it applies 
to making informed decisions on when best to call a critical peak-pricing event.  

3. Approach 
The approach used to complete this case study included the following tasks: 

1. Integration of the SIO weather forecasting subtasks with SDG&E and SAIC subtasks.  
2. A detailed review, or base case assessment, of the past year’s (2003) load control events and the 

actual weather conditions extant at the time.  
3. The analysis included identifying the following: 

a. The research questions to be answered, time scale, and desired accuracy of the forecasts.  
b. Identification of the models, data, and analysis methods used to address the major research 

questions. 
c. Weather forecast data used. 
d. Description of how SDG&E can incorporate the SIO weather forecast and how this is applied 

to deciding on invoking price-induced load control events. 
e. SAIC and SDG&E identified the economic value of from more accurately linking load 

control events to ideal weather conditions. 

4. Analysis and Results 
Background: Load and Error Analysis of Event Days 

Figure 1-3 shows the average SDG&E summertime weekday load over the hours 10 am to 4 pm, i.e., 
the average summer daytime load is X MW (note: in the rescinded version of this report, the values have 
been normalized to the average summer afternoon).  
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Figure 1-3. Different Load Management Scenarios, 2003 

The 12 highest load days during 2003, showed an average daily load 14% higher than average. Note 
that this does not include any PUC constraints (number of events/week, number of events/month). Also, 
this is carried out on the basis of load values, not temperature values. Selecting the top 12 hottest days 
gives a different average load due to the imperfect correlation between temperature and load.  

If the PUC-mandated constraints are incorporated (5/month, 2/week maximum), then the average load 
for those days, selecting on the basis of the load values, is 12% higher than an average summer day.  

Selecting temperature values (rather than load, as before) and with no constraints, the average load of 
the top 12 days is 12% higher than average.  

Selecting temperatures with constraints, the average of the top 12 days is 8% higher than average. 
The actual average load of the days SDG&E selected in 2003 was XX. 
Figure 1-4 shows the growth in electricity use over the period 1977 to 2003 (normalized in the 

rescinded version). To study the year-to-year variability of the peak load days, it is important to look at a 
longer timespan than just 2003, as figure 1.3 shows. To do this, we normalize by the trend line over the 
period 1990-2003 (shown in red in figure 1-4). This will allow us to calculate the effect of selecting tariff 
days over this entire period.  
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Figure 1-4. Historic Trends in Afternoon Load 

Figure 1-5 shows the year-to-year demand level normalized to the red trend line shown in the previous 
graph. So, for example, 1992 used 105% of the average electrical load on summer days than expected 
from the trend, while 2001 used 94%.  

 
Figure 1-5. Normalized Demand Level 
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In reviewing the same kind of numbers as before for the average summer day load -- but normalized, 
one can look at all years from 1990 to 2003. The average summer day load will be exactly 1.0 in these 
plots.  

Figure 1-6 shows how much more the load is than the average summer day when you pick the top 12 
events based on either the observed load (points marked “load”) or based on the observed temperature 
(points marked “temperature”). Also shown is the actual value SDG&E picked for 2003.  

 
Figure 1-6. Normalized Average Load on tariff days for various methods selecting tariff days: based on observed load (“LOAD”) or 

temperature (“TEMP”), and with or without PUC-mandated constraints.  Also shown are the results from the “super simple” 
statistical forecasting scheme. 

 
The relatively low average load of the days actually picked in 2003 suggests that a straightforward 

scheme could do better. One such scheme developed and evaluated here is the so-called “super simple 
scheme,” and works as follows. If today is > 26° C (79° F) and is 0.5° C (0.9° F) warmer than yesterday, 
then call a tariff day 3 days from now (i.e., if criterion satisfied on Friday, call Monday as a tariff day). 
Figure 1-6 shows that this scheme picks days with an average load of 6% greater than a typical summer 
day. Since the maximum that can be obtained based on perfect knowledge of temperatures is only 10%, 
and the actual performance in 2003 was X%, it can be seen that the super simple scheme both does much 
better than the method used to pick days in 2003, and recovers a decent part of the maximum attainable 
by any temperature prediction scheme. Therefore it is both useful and valuable in setting a practical 
minimum to the benefits of a program that selects days based upon temperature forecasts. 

Figure 1-7 shows Tariff Days’ temperatures and sea level pressures (SLP) in the context of their 
seasonal values. Tariff Days’ temperatures are warm outliers as per definition, while Tariff Days’ SLP, 
although tending to be somewhat lower than seasonal values on average, can also be close to or even 
higher than seasonal averages. This means that local SLP probably cannot be used to predict Tariff Days 
(see figure 1.10).  

} Typical range of daily Standard Deviations 
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Weather Variations Tied To Event Days: Historical Analysis 
Tariff Day season defined as June–November 
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Figure 1-7. Tariff Days At Miramar Marine Corps Air Station (KNKX) 
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Figure 1-8. Tariff Days’ Timing and Intensity by Season along with Average Values 

Figure 1-8 shows Tariff Days’ timing and intensity by season along with average values. It is clear that 
the average timing and intensity of Tariff Days in a season are unrelated. It is also clear that Tariff Days 
tend to occur in clumps and that what may be defined as a Tariff Day in one season may not be in another 
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(compare for example 1994 and 2002). This suggests that the definition of “Tariff Day” is not optimal for 
seasonal analyses, as it varies with each Tariff Day season and it is impossible to know what the 
temperature threshold for Tariff Day is until the season is over. 

Figure 1-9 shows that Tariff Days tend to occur in runs of consecutive hot days (i.e. clumps). This 
persistence, although artificially lowered by the arbitrary definition of the temperature threshold defining 
Tariff Days for each season, is nevertheless strong, suggesting that it is possible with simple persistence 
to predict Tariff Days when a Tariff Day run (clump) has started. In other words, the real challenge is to 
predict the first Tariff Day in a run of Tariff Days. 
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Figure 1-9. Tariff Day Timing-Intensity Plots.  

Consecutive Tariff Days are connected with red segments. 

Figure 1-10 shows the SLP field (colors) as well as local temperature and SLP (bottom curves) 
evolution leading up to the first day of a Tariff Day run. Figure 1-7 shows that local SLP has no particular 
signal on a Tariff Day. Comparing the field and local evolutions of SLP in these two figures and the two 
figures below (Figure 1-11), neither the spatial pattern of SLP, nor the local values evolve in a consistent 
way leading up to the first day of a Tariff Day run suggesting large-scale atmospheric circulation is 
surprisingly not a useful predictor for Tariff Days or Tariff Day runs. Local temperature, however, does 
show a ramp-up over one to three days previous to the onset of a Tariff Day run suggesting a very short 
lead time for the predictability of the onset of a Tariff Day run based on local temperature (see figure 1-
11).  

The following figures explore the predictability of the first Tariff Day in a run.  
MSLP evolution leading up to the First Day of a Tariff Day run: 
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2000 – 2-day run starting on July 31 2000 – 3-day run starting on September 11 
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Figure 1-10. SLP Field, Local Temperature and SLP Evolution for July and September 2000 
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MSLP evolution leading up to the First Day of a Tariff Day run: 

2002 –5-day run starting on August 31
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2003 –4-day run starting on August 9
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2002 –5-day run starting on August 31
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2003 –4-day run starting on August 9
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Figure 1-11. SLP Field, Local Temperature and SLP Evolution August 2002 and 2003 
Reconstruction of JJASON mean of Tariff Day season intensity (mean Tmax) and timing (mean Julian 

day) at Miramar (red) and using SD Airport and Cuyamaca stations (black). Correlation of the 
reconstructed indices with March Sea Surface Temperature.  

In figure 1-12, records at neighboring stations where longer records are available than at Miramar, were 
used to reconstruct average seasonal Tariff Day timing and intensity back to 1948, allowing for a seasonal 
analysis of the dependence of Tariff Day seasons on large-scale climatic conditions in the Pacific Basin. 
This figure shows that seasonal average intensity and timing of a Tariff Day season depend on large-scale 
climatic factors in the Pacific that are set in place months before the onset of the Tariff Day season. 
However, the relationship is weak, suggesting that seasonal predictability is limited. 
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Figure 12. Reconstruction of Average Seasonal Tariff Day from 1948 to Present 

Tariff days plotted together with Brawley – Lindberg Field (SAN) Tmax difference (i.e. inland-coastal 
Tmax, black curve) and SAN Tmax (green curve) with their respective means.  

Figure 1-13 attempts to explore the synoptic relationship between coastal marine layer intrusions and 
Tariff Day occurrences. As expected, an association is found, however, the lead time is too short to be 
used for predictive purposes. Nevertheless, the association between marine layer intrusions and Tariff 
Day occurrences is strong and deserves more scrutiny, as the marine layer events may be climatically 
more predictable than Tariff Day onset. In this case, a predictive tool for Tariff Days may be possible. 
However, predicting marine layer intrusions is a rather complicated problem and is beyond the scope of 
this pilot study. Small Brawley – SAN Tmax difference indicates clear coastal conditions. 
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Figure 1-13. Marine Layer Influence 

Estimating the Cost Effectiveness of Improving the Targeting of  
Load Management Tariff Periods 

In a meeting with SDGE it was stated that the tariff event program had a goal of achieving a significant 
penetration in the market to clip 5% of SDGE system peak. The average system peak and off-season peak 
were presented in the earlier analysis of peak days with and without constraints. Average summer peak 
load is about X MW. With better targeting of loads to temperature sensitive time periods, an additional X 
MW’s can be potentially obtained when considering (with some constraints) the 12 highest peak load 
days that were experienced in 2003 (see figure 4-1.). This means that if the goal of 5% of system peak 
were to be realized at the higher periods, an additional X MW’s could be produced if the 5% goal were 
issued for the 12 highest peak load days using 2003 as a base. Experience in the summer 2001 electricity 
crisis showed that with aggressive marketing and a renewed sense of urgency, peak demand could be 
clipped by up to ten percent of peak load. Thus, the five percent target is more modest, compared to that 
which can be achieved in more urgent time periods with a call to action. However, the ten percent peak 
load reduction level through voluntary curtailments is not sustainable over time unless ongoing urgent 
appeals and corresponding pricing and other financial incentives are provided.  

Furthermore, as the program is designed to be implemented in all seasons (in the pilot stage) many 
events are ‘called’ when the avoided costs to the power system could be negligible. While the current 
SDG&E assumed avoided cost is $85-kW-yr (the equivalent value of a peaking unit in Southern 
California), the actual avoided cost in non-summer peaking periods could be much lower. The avoided 
cost taking into account potential power plant spinning reserve during off peak periods might even be 
zero. In fact, the program in these cases may add cost. 

Nevertheless, adhering to the current planning assumption of $85/kW-yr and recognizing that the goal 
is 5% of peak, the total potential value of the program is $X  per year with the assumptions listed below.  
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Over a ten-year period, this program would amount to $X (in present value terms) – a benefit 
significantly higher than the current pilot program costs. 

With better targeting the program to the higher peak periods, this would result in an approximately $X 
million per year, and a ten year present value of $X. The dollar savings appear to be significantly more 
impacted than the modest level of incremental demand that would occur.  

As mentioned earlier the current program is only hitting about X% of the highest load periods and the 
improved forecasting approach could increase this to about a 6% hit rate, so the program is still capturing 
peak load reductions in periods when a substantial amount of spinning reserve and non-peaker unit 
generation is occurring.  

 
 

 

(Costs rescinded)    
    
    
    
    
    
    
    

Key Assumptions 
The power savings are an estimated 5% of an average summer peak load. The 5% was a stated goal of 

SDG&E for the program. The marginal generation capacity costs were also a California utility and 
SDG&E collaborative assumption given to SAIC/Scripps. This number was compared to the actual price 
and ten-year life cycle cost of a peaker for the California market and verified to be a reasonable cost 
assumption. Peaker costs outside of California, will be brought to market at substantially less cost. 
Annual savings calculations are shown in table 1-1. Inflation and discount rates are reasonable and 
consistent with industry assumptions for planning studies of this nature.  

Cost estimate when well over 90% of the program occurs in periods that are either in the shoulder or off 
peak periods, is likely to overstate the benefits of the program at the pilot stage of performance and load 
impacts. The estimated savings shown in Table 1-1 are more indicative of potential benefits of the 
program if it were successful in shaving peak load during the highest peak load periods when peaking 
units were, in fact, operating or if spot power purchases occurred in the market that were either at $85/kw-
yr or higher. It is quite likely that if load constraints and spot purchases were made to meet the load, 
chances are that the avoided cost could even be much higher than the $85/kw-yr value that is used.  

5. Conclusions 
The major conclusions from this analysis of the tariff demand response program are the following: 

 Perfect knowledge of future loads would allow the selection of days with an average load 12-18% 
higher than usual on a summer afternoon. 

 Constraints (2/week, 5/month) drop that to 11-15%. Weekly constraint is most important. 
 Using temperatures at Miramar (as opposed to actual loads) introduce another level of uncertainty. 
With constraints, the best possible is 7-11%. 

 Year 2003 was only X% of hitting the peak load. It may be possible to improve. Sources of possible 
improvement include statistical approaches, or using forecasts of weighted temperature rather than just 
Miramar. In addition, further improvement may be possible by changing the design of the program and 
attempting to focus the events during the periods with the highest historical probability of when peak 
loads would occur.  

Figure 1-14 shows that the Mean Tmax evolution around an average single tariff day or the first day in 
a run of tariff days (day zero: black curve) and around any old tariff day (day zero: red curve). Tariff days 
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are persistent. While the single and first days are not predictable (at least not by auto-regression) four days in 
advance, they may be predictable with 2-3 day lead-time. Tariff days other than first or single days are persistent and 
are predictable by auto-regression with a longer lead-time. This is the characteristic that allows a useful super-simple 
prediction scheme, as described above. 
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Figure 1-14. Prospects for Prediction Chart 

The cost/benefit analysis of the pilot program uses an avoided cost based on the “peaker method”. It has 
the drawback that it assumes forecasts achieve 100% skill in hitting peak periods.  Despite that, electrical 
procurement cost savings are still obtained on days with higher than average load (costs) using the 
statistical forecasting scheme outlined here.  This results in a direct savings of $X/yr.  The final economic 
benefit of this program, then, is between the minimum attainable savings of $X/yr and the ultimate peaker 
method savings of $X/yr. 

A more accurate reflection of program benefits are likely to be based on: 

1. The actual hours when program events were called 
2. Avoided capacity and congestion costs at the nodal points where the loads were reduced 
3. The sum of all loads and avoided costs for each hour an event occurred. No such information was 

available and this information at a nodal or zone area might be too difficult to acquire unless the 
addresses of the participants were mapped to the zones in SDG&E’s service territory. Given the 
proportionality of the loads occurring in off peak periods, the greater the likelihood that spinning 
reserves might be operating and avoided load and energy would be minimal.  



 
 

Economic Benefit of Incorporating Weather & Climate Forecasts into Western Energy:  Deliverable 4 1-16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Page Intentionally Left Blank 



 
 

Economic Benefit of Incorporating Weather & Climate Forecasts into Western Energy:  Deliverable 4 2-1 

Chapter 2: Use of Ensemble Forecast Models to Reduce Cal ISO  
Load Forecast Error 

1. Introduction 
The Cal ISO benchmark report of Deliverable 2 presented the details of the “model consensus” 

approach that Cal ISO uses to incorporate weather forecast information into the load forecasting process. 
This study establishes the value of using ensemble weather forecast probability distributions to 
significantly reduce the Cal ISO exposure to weather-related demand forecast errors. Given a collection 
of forecasts from different models, the traditional “model consensus” approach that Cal ISO uses simply 
averages the Model output to form a single forecast. In this report, ensembles of forecasts over different 
models and different initial conditions under the same model are considered. Rather than merely average 
this data, a variety of different methods for combining these simulations into a probability forecast are 
explored. The use of multiple models allows some accounting for model error, and it is found that the best 
performance does indeed come from a multiple model ensemble, called PF1 (Probability Forecast 1). This 
model, along with a probabilistic model build solely on AVN output, are explored further. 

Employing probabilistic forecasts allows new approaches to risk management. Since the cost of the 
demand (temperature) exceeding the forecast can be much more than the cost of demand (temperature) 
falling below the forecast by the same amount, the best strategy is rarely (if ever) to go with the model 
consensus. A probability forecast provides many different levels, called isopleths. The most economically 
advantageous isopleth to use will depend on the cost function, but can easily be determined empirically. 
In this case, it is found to be about the 55% level for both PF1 and PF_AVN. This approach is, 
effectively, using the forecast distribution to automatically include a safety factor based on the difference 
in the relative penalties for over forecasts and under forecasts. This allows one to quantify weather related 
demand forecast confidence in a more quantitative and automatic manner at a relatively low cost. 

This chapter contains details of the procedure used to select model simulations and the ensemble 
verification methods introduced to select PF1 from among the other probability forecast models 
considered. The impact of small data sets on the robustness of the statistical results (that is, whether the 
improvements of 2003 would be observed in 2004) is a major concern in any study of this kind. All initial 
model selections were done under “drop-one-out cross-validation” (rebuilding the model for the entire 
summer to forecast each day so that data on the current date is not included when forecasting a future day 
and the bootstrap significance levels are quoted in the tables. 

Given the nature of the forecast usage and initial results on the information content in long range 
forecasts, this report focuses on short lead forecasts. The most extensive results are provided for a lead 
time of one day. The information in the forecasts decays rapidly, and the models available to form the 
ensemble changes as well since many of the models are only available for lead times beyond three days. It 
is shown that in the longer range there is little if any skill above climatology.  

Finally, we note that this use of ensembles does not assume that the PF1 forecast is an objectively 
accurate probability forecast. If it were, then a different utility-based optimization would be in order. 
Rather we take the distribution as the best information available and extract the best demand forecast 
isopleth empirically.  

2. Retrospective Weather Forecasting Results 
From Simulations to Probability Forecasts: Overview 

This section documents the probabilistic weather forecast analysis. Forecasting the region temperatures 
is reported and the transition from temperature probability forecasts to economic performance forecasts is 
discussed. The operational numerical weather prediction (NWP) station forecasts are translated into 
probability forecasts for daily maximum regional temperature (Tmax) in each of the four Cal ISO regions. 
The method then determines which isopleth of the forecast distribution maximizes expected economic 
utility. Current forecast accuracy reflects the use of summer 2003 data in both construction and evaluation 
with full (drop one out) cross-validation in the construction of the individual predictors.  
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Several distinct methods for constructing the probability forecasts are contrasted and described in detail 
below. The individual NWP forecast products used are given in Table 1 while a guide to the stations used 
is given in Appendix 1. The methodology and results are presented focusing on the Bay Region as an 
example. The details for all of the four regions are also presented. 

Temperature as the Forecast Target 
For each day of the summer of 2003, the target is the regional temperature as defined by Cal ISO. These 

targets is illustrated for the four regions in Figures 2-1 to 2-4. The aim is to produce a skillful probability 
forecast for these targets. In terms of forecasting weather variables, skill is measured relative to 
climatology. Given these results for the forecast weather variables, economic impact of the forecasts are 
evaluated in terms of dollars. For most NWP models in this study, the probability forecasts are formed by 
combining the output of an optimized linear predictor with its historical error statistics (“dressing” the 
forecast). For the NCEP forecasts, the initial condition ensemble itself provides information on the 
probability forecast on a given day. The marginal value of these various forecasts is then considered.  

The operational value of the forecasts depends on the way in which they are interpreted. This study 
suggests that using various forecast isopleths is the best approach. Action firmly based on one of these 
isopleths rather than some “model consensus mean” will significantly decrease the user’s weather risk 
exposure. 
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Figure 2-1. The Time Series of Cal ISO Bay Region Temperature Over the Summer 2003 
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Figure 2-2. The Time Series of Cal ISO Non-Bay Region Temperature Over the Summer 2003 
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Figure 2-3. The Time Series of Cal ISO Region Temperature Over the Summer 2003. 
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Figure 2-4. The Time Series of Cal ISO Region Temperature Over the Summer 2003. 

The popular alternative to evaluating probability forecasts is to base decisions on the so-called “model 
consensus” forecast (see Fritsch et al, 2000, Weather and Forecasting, 15:571). Although this traditional 
approach aims for an “optimal blend” of forecasts, it increases the operating risk of any user with an 
asymmetric utility function, such as the one for CalISO as demonstrated in figure 2-5. Given that under-
forecasting the maximum temperature by 3 degrees is likely to be much more costly than over forecasting 
by the same amount, the utility functions of interest to Cal ISO are clearly asymmetric. This implies that 
benefits of the model consensus approach currently used do not apply to the temperature forecasts as used 
in this application. 
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Figure 2-5. Cost Curve for Under/Over Forecasting From Cal ISO.  

Note the asymmetry between over forecasts and under-forecast. 

3. The Ensemble Approach: Selection and Verification 
For each day, we also have a collection of predictors from various NWP models. We will consider this 

information in several distinct ways. The first is to combine information from each NWP model to form 
the best linear predictor for the region, and then combine these individual region predictions to form an 
overall best linear predictor. Typical forecast errors are then used to dress this point forecast with a 
Gaussian kernel. The kernel is simply a distribution, which replaces each point forecast (which can be 
thought of as a delta function). Kernels are commonly employed in density estimation, as an example in 
forecasting, the use of Gaussian kernels allows us to turn the prediction of 5 point forecasts (often treated 
as the sum of 5 delta functions) into the sum of 5 Gaussian distributions. The strength of this approach is 
that it provides a smooth forecast density, and allows us to treat the errors expected from having only a 
finite number of members in our ensemble. The word kernel is used to refer to the statistical distribution 
used to dress the point forecast, while calling the forecast itself the forecast distribution. The Gaussian 
kernel transforms the point forecast into a probability forecast (called PF1) Whereas PF1 uses the data 
from all the models simultaneously to produce a single linear point predictor, the second method 
constructs a distinct probability forecast based on the information from each model individually, where 
each has been weighted in terms of its skill as a point forecast. This probability forecast is called PF2. In 
the third method, the forecasts are formed as in method two, but they are dressed with different kernels 
that have been optimized to give a more skillful probability forecasts and referred to as PF3. Finally, the 
fourth and fifth methods exploit the fact that the NCEP model is run in ensemble mode and thus each 
forecast comes with an estimate of the “kernel of the day.” So while the kernels used in the first three 
methods are static, that in method four and five allows the NCEP kernel to be derived from the ensemble 
itself and thus changes daily. At short lead times the dynamic kernel of the NCEP model is systematically 
too small, leading to very poor forecast scores. PF5 is a simple model that inflates the observed dynamical 
uncertainty.  

Before considering tables of the results for various regions and PF models, an illustration of how a PF 
forecast can prove more useful in practice than the consensus forecast is presented. Figures 2-6 and 2-7 
show two different probability forecasts for the Bay Region. Both use model PF2 - one is from July 27, 
2003 and the other from July 16, 2003. In the first, the consensus (that is the ensemble mean) is a fine 
estimate of the temperature; in the second, however, the mean is too low. PF1, however, has a wide 
probability forecast on this day, however, and the observed temperature corresponds to roughly the 70% 
isopleth of the probability forecast. Referring back to figure 2-5, the cost of a demand forecast based on a 
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temperature over-forecast can be significantly less costly than a temperature under-forecast of the same 
amount – specifically the cost of a +4000 MW error is about one quarter of a –4000 MW error. Given this 
asymmetry in the cost curve of figure 2-5, there is significant utility in moving away from the mean (or 
median). Use of an isopleth other then the median (or the mean value) can avoid large losses. On one 
level this is nothing more than the common procedure of including a safety margin, but at a higher level a 
skillful probability forecast can not only provide a more objective standard for this “safety margin” but 
also allow the margin to adjust from day to day depending on the level of uncertainty in that day’s 
forecast. . The key advantage over methods where the operator may add a safety factor, is that using an 
isopleth of the forecast distribution provides an optimized approach when the width of the forecast 
distribution is fixed, and in addition a safety margin that varies from day to day in step with variations in 
the reliability of the forecast. 

SDGE on 27 July 2003
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Figure 2-6. A “Good” Probability Forecast, Where the Verifying Observation Happens to Fall Near the Centre of the Forecast 

Distribution.  
In this case PF1 out scores AVN and PF3, although all bound the verifying observation nicely. 

SDGE on 16 July 2003 
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Figure 2-7. The Mean of the Forecast Distribution Shown Here is Significantly Below the Verifying  

Observation, But the Verifying Analysis Falls Well Within the Distribution of PF3.  
Given that the penalty for under-forecasting demand is much greater than that for over-forecasting,  

using an isopleth well above the median can prove consistently profitable. 
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Three measures of forecast skill are used below. All point forecasts are evaluated in terms of the root-
mean-square (RMS) error from the target. Probability forecasts are evaluated both in terms of their Brier 
Score (BS) and their Ignorance (IGN). The Brier Score is simply the square of the probability the forecast 
assigned to the target, averaged over all forecasts. Ignorance, on the other hand, is the negative of the log 
of the probability assigned to the target, again averaged over all forecasts. Thus while a small value of the 
RMS error or a small IGN score indicates a more skillful forecast, a larger value of the Brier Score 
indicates a more skillful forecast. The relationships between these measures of forecast skill are discussed 
in Roulston and Smith 2002 (Evaluating probabilistic forecasts using information theory, Monthly 
Weather Review 130 1653), Roulston and Smith, 2003 (Combining Dynamical and Statistical Ensembles, 
Tellus 55A, 16), and the reference therein. 

Performance statistics for the PF forecasts for each of the four Cal ISO regions are given in the next 
section. The next step was to evaluate the performance of various isopleths in terms of economic value for 
each PF model. The contribution to performance was contrasted with an estimated cost of each 
component NWP data stream. A single PF model structure was selected for further study. The fact that 
the forecasts were interpreted in economic terms for the same summer in which they were constructed 
raises issues of cross validation. Ideally the 2003 data will also be evaluated using a model constructed 
from data covering the summer of 2002. Four PF models are constructed with drop-one-out cross-
validation and then bootstrap uncertainty estimates are provided for each skill score in the tables below. 

4. Relative Weights for Deriving Probability Forecasts 
The four methods outlined above are now presented in detail. The key point of this section is that five 

distinct probability forecasts methods (PF1, PF2, PF3, PF4 and PF5) are constructed from the four 
models. The method of construction is fully specified in this section. An understanding of the remainder 
of the section, which contrasts the skill of these methods, does not require a full understanding of the 
construction of each PF. 

Method One: The Combined Best Linear Predictor (PF1) 
The first step was to construct a single probability forecast for a given region using the output from 

each weather model simulation (all the forecasts from a given model for the stations within the target 
region) At this time, Tmax models have been built based upon seven different sets of model simulations, 
namely AVN (including AVN-mos), ETA (including ETA-mos), MRF, NGM-mos, ENS and MEM. The 
last two (ENS and MEM) include ensemble information.1 All historical forecast data was supplied by 
QuantumWeather, the only exception being Forecast information from Cal ISO which they used in their 
model. All our modeling results below are based on the QuantumWeather data. Model products are 
denoted by their QuantumWeather lables, the table 2-1 below provides the standard product definition 
and a location for further information on that product (Appendix 2). Refer to the various input variables 
provided from each of these weather forecasts as a package, thus for each model and for each day there is 
a package of NWP forecast information and a verification target (the Cal ISO Regional Tmax). 

Table 2-1. Inputs to the Seven Models, Time Scales, Variables for One-Day Ahead Forecasts 

Package 
No No Model Number of 

Predictors 
Model 

run time 
1 

Delay 1 UTC time 
1 

Model run 
time 2 Delay 2 UTC time 

2 
 

1 avn 2 18 0 18 21 0 21 1 2 avn_mos 2 18 0 18 21 0 21 
3 avnext 0       
4 ens 1 24 0 0    
5 ens_max 1 24 0 0    

2 

6 ens_mean 1 24 0 0    

                                                                 
1 Additional forecast products and models not in the draft report have now been included; the data sets for some forecast 

products were found to be corrupt and are excluded from the original analysis (for instance the ETA-mos). The main difference 
found from including the ETA-mos is seen in the ETA-new results, which consistently outperform the original (ETA) package. 
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7 ens_min 1 24 0 0    
8 ens_sdn 1 24 0 0    

 

9 ens_sdp 1 24 0 0    
10 eta 2 18 0 18 21 0 21 3 11 eta_mos 2 18 0 18 21 0 21 
12 mem 1 24 0 0    
13 mem_max 1 24 0 0    
14 mem_mean 1 24 0 0    
15 mem_min 1 24 0 0    
16 mem_sdn 1 24 0 0    

4 

17 mem_sdp 1 24 0 0    
18 mrf 1 24 0 0    5 19 mrf_mos 1 24 0 0    

6 20 ngm_mos 2 18 0 18 21 0 21 
21 ens_mean 1 24 0 0    7 22 ens_sdp 1 24 (difference 22 - 21 used only for prob. forecasts) 

For each package we perform a singular value decomposition. This provides the weights of the optimal 
linear predictor from that package to the target, as well as daily forecasts and residuals for each package. 
The results for the four Regions are shown in tables 2-2, 2-3, 2-4, and 2-5.  
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Table 2-2. Relative Performance Over the Summer of 2003 of the Individual NWP Packages, Shown for Bay Area.  
Note that the AVN package and PF1 tend to have the best ignorance and Brier scores. 

PG&E Bay Area Summer 2003 
 

Number Package Bias 
Standard 
Deviation 

Error 
Mean rel. 
Ignorance 

Bootstrap 
Deviation 
Ignorance 

Brier Score 
(*1000) 

Bootstrap 
Deviation 

Brier Score 
1 AVN 0.01 3.42 -1.15 0.09 7.68 0.43 
2 ENS 0.00 6.35 -0.26 0.10 2.34 0.12 
3 ETA new 0.01 4.06 -0.90 0.10 5.55 0.32 
4 MEM 0.00 6.77 -0.16 0.15 2.23 0.10 
5 MRF 0.00 5.77 -0.40 0.11 2.85 0.16 
6 NGMMOS 0.01 4.23 -0.84 0.10 5.28 0.28 
7 ENS new 0.00 5.83 -0.38 0.09 2.75 0.14 
8 PF1 0.01 3.56 -1.09 0.09 7.11 0.43 
9 PF2 - - -0.78 0.05 3.61 0.15 
10 PF3 - - -0.86 0.04 4.05 0.13 
11 PF5 0.00 5.83 -0.35 0.11 3.26 0.28 
12 Cal ISO 1.31 4.31 - - - - 

 

Table 2-3. Relative Performance Over the Summer of 2003 of the Individual NWP Packages, Shown for Non-Bay Area. 
Note that this time PF1 scores best, but again the AVN package and PF1 tend to have good ignorance and Brier scores, however ETA-new 

does well in this region also. Further tuning for PF3 could be of  
significant value of sufficient data is available to validate the tuning. 

PG&E Non Bay Area Summer 2003 
 

Number Package Bias 
Standard 
Deviation 

Error 
Mean rel. 
Ignorance 

Bootstrap 
Deviation 
Ignorance 

Brier Score 
(*1000) 

Bootstrap 
Deviation 

Brier Score 
1 AVN 0.04 1.66 -2.02 0.11 35.54 1.83 
2 ENS 0.01 3.83 -0.82 0.11 6.39 0.32 
3 ETA new 0.04 1.51 -2.16 0.08 41.22 1.68 
4 MEM 0.01 4.00 -0.76 0.08 5.91 0.28 
5 MRF 0.01 3.52 -0.94 0.08 7.27 0.39 
6 NGMMOS 0.02 2.13 -1.67 0.09 20.04 1.30 
7 ENS new 0.01 3.41 -0.98 0.10 8.08 0.40 
8 PF1 0.05 1.39 -2.28 0.09 48.17 2.36 
9 PF2 - - -1.62 0.04 13.99 0.53 
10 PF3 - - -1.83 0.04 18.96 0.56 
11 PF5 0.01 3.41 -1.01 0.10 8.91 0.57 
12 Cal ISO -0.37 2.44 - - - - 
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San Diego Edison Summer 2003 
 

Number Package Bias 
Standard 
Deviation 

Error 
Mean rel. 
Ignorance 

Bootstrap 
Deviation 
Ignorance 

Brier Score 
(*1000) 

Bootstrap 
Deviation 

Brier Score 
1 AVN 0.02 2.10 -1.64 0.16 22.30 1.22 
2 ENS 0.00 4.30 -0.61 0.08 4.82 0.25 
3 ETA new 0.01 2.86 -1.20 0.11 11.88 0.60 
4 MEM 0.00 4.65 -0.50 0.11 4.56 0.20 
5 MRF 0.01 3.71 -0.82 0.08 6.70 0.33 
6 NGMMOS 0.02 2.50 -1.39 0.10 15.44 0.72 
7 ENS new 0.01 3.92 -0.74 0.11 6.11 0.39 
8 PF1 0.02 2.04 -1.69 0.11 23.53 1.29 
9 PF2 - - -1.18 0.07 8.83 0.45 
10 PF3 - - -1.30 0.07 10.42 0.50 
11 PF5 0.01 3.92 -0.51 0.18 8.68 1.03 
12 Cal ISO 0.33 2.59 - - - - 

Table 2-4. Relative Performance Over the Summer of 2003 of the Individual NWP Packages,  
Shown for San Diego Edison Area.  

PF1 scores best, although AVN is nearly within the one sigma the bootstrap limits. 
 

San Diego Gas and Electric Summer 2003 
 

Number Package Bias 
Standard 
Deviation 

Error 
Mean rel. 
Ignorance 

Bootstrap 
Deviation 
Ignorance 

Brier Score 
(*1000) 

Bootstrap 
Deviation 

Brier Score 
1 AVN 0.01 3.39 -1.11 0.11 8.16 0.56 
2 ENS 0.00 5.22 -0.49 0.08 3.18 0.19 
3 ETA new 0.01 3.82 -0.94 0.12 6.78 0.31 
4 MEM 0.00 5.43 -0.43 0.19 3.41 0.16 
5 MRF 0.00 4.52 -0.70 0.07 4.36 0.22 
6 NGMMOS 0.01 4.19 -0.80 0.08 5.44 0.31 
7 ENS new 0.00 4.98 -0.56 0.11 3.65 0.20 
8 PF1 0.01 3.32 -1.14 0.10 8.63 0.48 
9 PF2 - - -0.88 0.07 4.56 0.25 
10 PF3 - - -0.92 0.05 4.82 0.20 
11 PF5 0.00 4.98 -0.40 0.13 4.96 0.50 
12 Cal ISO 2.11 3.88 - - - - 

Table 2-5. Relative Performance Over the Summer of 2003 of the Individual NWP Packages, Shown for  
San Diego Gas and Electric Area.  

Note that the AVN package and PF1 again have overlapping bootstrap ranges, but PF1 is again scoring better 
. 

Note that the PF model called AVN_Package uses different inputs and is fit differently than the Cal ISO 
use of AVN model output. This explains why AVN_Package performs significantly better than the Cal 
ISO AVN, although both are using weather forecast information from the AVN model. 

The next step combines these individual package forecasts into a single forecast. Method One does this 
by finding an optimal linear combination. Method Two uses an alternative approach. 

Given the six forecasts from the packages, Method One now forms relative weights for the optimal 
linear predictor combining these inputs, again using a singular value decomposition where the input 
matrix is now composed of the output from the optimal linear predictors of the individual NWP packages. 
The target is the observed Tmax. The relative weights are given in table 2-6. 

Table 2-6. Sample Relative Weights per Package and Performance.  
This example is for PF1 forecasting KSFO; a similar set of weights is computed for each model for each station in each region. The resulting 

table is somewhat unwieldy. Average weights will be included the Supplemental Material (in soft form). 
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Station AVN ENS ETA MEM MRF NGM MOS CONST Bias  Standard 
Deviation

 Mean 
Ignorance

 Brier 
Score 
(*10^3)

KSFO 0.33 -0.10 -0.17 0.21 0.15 0.58 0.00 0.10 4.35 4.17 4.86
 

Method One now constructs a probability forecast defined by a Gaussian distribution centered on the 
forecast value with a standard deviation defined by the historical error statistics. The standard deviation 
does not change from day to day due to the synoptic state, but could be adjusted with month (using 2002 
data from 2003, or 2003 data from 2004, and so on), or computed over a sliding window (to account for 
changes in the model(s)). 

Method Two: Union of Distributions From Linear Forecasts (PF2) 
From table 2-2, it was demonstrated that the individual forecast from each package has variations in 

skill. In a non-risk neutral setting, it appears that one model provides (statistically useful) early warning of 
a large change. In terms of a linear predictor, a model will be penalized for doing this, and given a lower 
weight relative to a more conservative model which yields a better root-mean-square error forecast but 
under-forecasts every single large change. 

The approach used in Method Two allows the possibility that such information can be exploited by 
combining the forecast distributions of the individual packages, rather than placing a distribution about 
their combined forecasts. This naturally allows a wider distribution on days when the individual packages 
disagree.  

The simplest implementation of this approach (PF2) is to sum a series of Gaussian distributions, one 
from each model, where the models are equally weighted and the width of each distribution is simply the 
standard deviation of that package’s historical forecast errors. This defines PF2. 

Method Three: Kernels Optimized with Information Theory (PF3) 
In the previous approach, the kernel width was based upon the historical skill of a package at delivering 

point forecasts. In PF3, a more relevant information theoretic skill is optimized. Again the forecast of 
each package is dressed with a Gaussian kernel, but in PF3 both the width of that kernel and the weight 
given to each model is adjusted in terms of overall model performance.  

Optimal construction of PF3 would involve a high dimensional optimization problem. There is not 
sufficient data to justify this approach. Rather, a series of PF3 models was built, adjusting the weight of 
each model, one model at a time. This approach has the added advantage that the cost and reliability of 
delivery of each model can be factored into the evaluation. 

Another advantage of PF3 (and to a lesser extent PF2), is variation in the width of the PF3 probability 
forecast from day to day; several predicted probability density functions are shown in figure 2-8, along 
with the verification. In this case the verifying observations are below the mean of PF3 distribution: 
employing an isopleth above the mean would not help in this case. Nevertheless, this distribution is 
visibly wider than typical, and hence there was some prior warning that this was a particularly uncertain 
forecast. The extent to which this knowledge could be acted upon depends, on the detailed options 
available to Cal ISO. Such early warning can be found in a number of the summer’s forecasts.  
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SDGE  on  Oct 10 2003
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Figure 2-8. Illustration of a Relatively Wide Forecast From PF3 on Oct 10, 2003 for SDGE; in this Case the  

Verifying Observation Fell Below the Median.  
The advantage of the PF3 forecast here is that it was known to be uncertain when the initial decisions were taken and alternative strategies 

to cope with this ‘irreducible uncertainty’ could have been put into place for this particular day. 

Method Four: Dynamically Determined 
Kernels (PF4)  

This method allows the spread associated 
with those models that run an ensemble of 
initial conditions to change from day to day. 
For models which do not have ensembles, the 
components of predictor consist of the sum of 
Gaussians from the individual packages just as 
in PF2. Those models which do have ensemble 
information provide additional components 
centered on their forecast, but with a standard 
deviation which varies with the width of that 
NWP ensemble forecast. First the relative 
width and then the relative weight of the model 
are adjusted to improve the ignorance score. 
Although the value of the information in the 
ensemble spread is expected to increase with 
lead-time, no significant value in the use of the 
dynamical spread “as is” at any of the lead 
times tested was detected. As a result, no 
results for PF4 are included, rather, PF5 is introduced, where the kernel is based upon the dynamical 
kernel-of-the-day, but adjusted statistically to improve the skill scores. 

Method Five: Dynamically Based Kernel Widths (PF5)  
Given that the dynamically based kernel provided by the ensemble was systematically too narrow, a 

simple method of inflating the dynamical width by a fixed factor was used to increase the skill of the 
NCEP forecast. The inflation values are given in table 2-7 below. Better methods for adjusting the 
ensemble based kernel width, for instance setting a lower bound based on the historical error in the mean. 
This would limit the utility of the forecast in identifying days with higher than normal predictability. For 

Table 2-7. The First Line of the Table Shows the Average of the 
Standard Deviation of the Ensemble Members Over All Summer 2003 

Days, for Each Region.  
The lower eight entries show the inflation factor (for each region) required 

so that the ensemble spread of the dynamical ensemble will match, on 
average, equal that of the historical error distribution of that model or 

package. These results are not out-of-sample.  

 PG&E 
Bay 

PG&E 
Non Bay SDE SDGE 

 

Ensemble Standard 
deviation 2.11 3.31 2.52 2.95 

PF1 1.69 1.13 0.81 1.13 
AVN 1.62 1.15 0.83 1.15 
ENS 3.01 1.77 1.71 1.77 
ETA new 1.93 1.29 1.13 1.29 
MEM 3.22 1.84 1.84 1.84 
MRF 2.74 1.53 1.47 1.53 
NGMMOS 2.01 1.42 0.99 1.42 
ENS new 2.77 1.69 1.56 1.69 
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this application, however, there was no method which yielded significant skill to this dynamical-based 
kernel.  

Comparison of Forecast Performance 
The forecasts of these models were then contrasted, noting that PF1 is a Gaussian with a fixed width, 

that PF2 is a sum of (fixed width) Gaussian distributions and thus the width of PF2 is expected to vary 
from day to day. PF3 is again a sum of a different set of fixed width Gaussians. PF4 and PF5 have widths 
determined from a dynamical ensemble forecast. 

The forecast skill for various methods discussed above is contrasted in tables 2-2, 2-3, 2-4, and 2-5. 
We see that PF1 and the AVN package consistently have the best scores. The bootstrap significance 

levels show that the performance of several of the methods is similar, but the fact that PF1 is consistently 
better than the AVN package outside the Bay Area suggests true skill. Tests on a second summer season 
will clarify this issue. 

Beyond the issue of pure skill, there are other operational issues to consider. For instance, PF1 requires 
the entire NWP forecast dataset to be available every day, whereas PF2 can easily be constructed and 
interpreted even when one of the NWP packages is missing. While PF3 need not require all the NWP 
packages in the first place, it is unlikely to be robust if a NWP package that it ranks highly is missing on a 
given day. It is recommended that alternative PF models are developed and calibrated for use in the event 
that any one NWP information package is unavailable on a given day. 

Interpreting Isopleths Other than the Mean 
Consider how the observed target value is likely to appear when plotted over the forecast isopleths of a 

PF forecast. The target values will sometimes fall above the 90% isopleths. This is, of course, expected 
even for a perfect probability forecast, where about 10% of the targets should fall above the 90% isopleth, 
just as 50% are expected to fall above the median.  

Forecast users with asymmetric risk need not base decisions upon the forecast mean value, even with a 
perfect probability forecast. Instead, they can plan based upon some other isopleth. In the case of Cal ISO 
where under-forecasts are more costly than over-forecasts, one is most likely to take an isopleth between 
50% and 90%. The particular value chosen will depend upon a mixture of the relative costs of reality 
falling above or below the threshold chosen, the volatility of the quantity measured, and the quality of the 
forecast model in hand. 

Temperature Forecasts Beyond Day One 
The collection of forecast models above was developed for one day ahead forecasting. There is clearly a 

need for longer range probability forecasts. Lead times of 2 days, 3 days, 10 days and 14 days are 
explicitly considered. For days 2 and 3, our AVN package and PF1 both show significant skill above that 
of climatology These results are presented in the next section where, like the day one forecasts, they are 
translated into demand forecasts. Many of the numerical weather model forecasts that go into PF1 are 
only available for lead times less than 10 days, thus a 10 or 14 day PF package can not include the MOS 
forecast products or any ETA products. In addition the number of forecast reporting times also decrease 
with lead time. None of the PF packages demonstrated skill above climatology at day 10 or day 14. It is 
often observed that, at lead times of 10 days and longer, the ensemble tends to be too narrow. Including 
historical information on forecast accuracy, however, tends to yield a forecast distribution much too wide, 
sometimes extending beyond the range of historical observed temperatures (that is, outside climatology). 
Translating these extreme temperature distributions into demand forecasts yields fallacious results and 
they are not pursued further here. It would be interesting, however, to develop a package which combined 
these longer range forecasts with climatological data conditioned on the current observations. Of course, 
it may be that there is simply no information relevant to demand that can be extracted from these forecasts 
at these lead times.  

5. Economic Impact Results 
Objective 
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This section outlines the methodology for exploiting the information content of improved probabilistic 
weather forecasts in Cal ISO’s demand forecasting and quantifying the likely economic impact. 
Specifically, we show how the probability distribution temperature forecasts for each of the four Cal ISO 
regions can be exploited to improve the expected economic performance of Cal ISO demand scheduling. 
This process consists of two steps, the first is to realize that the traditional approach of forming a single 
best-first-guess (or consensus) forecast is sub-optimal. Better economic decisions are almost certainly 
possible by not basing demand decisions on the best informed RMSE-minimum estimate of temperature 
implied demand. Rather, due to the asymmetric cost of over-forecasting and under-forecasting, expected 
economic benefits are maximized by planning according to a temperature value offset from the median 
forecast value, where the offset will vary with the reliability of the forecast. The second step consists of 
determining exactly which probability contour (the median? The 60%? The 75%?) or isopleth to use in a 
given situation. In short, the 55% isopleth of our probability model PF1 yields the most significant 
reduction of weather related costs.  

As stated earlier, but worth reiterating here, operators currently “unsystematically” add a safety factor 
to the forecast to take into account the effect of the non-systematic cost function with which they are 
clearly familiar. Operators realize that there is a greater negative consequence for a large underforecast 
miss than for a long string of small overforecast misses, even when the latter costs more over the year. 
The ensemble methods presented here give them a “systematic” way to “improve their forecast. 

In addition, the median of PF1 (or the AVN _Package) differs from the Cal ISO calculation of the 
demand forecast developed from their AVN station data. The method presented here demonstrates greater 
accuracy as well. It processes the AVN output in a better way and provides forecast distributions to allow 
a systematic optimization of the isopleths. 

These results are robust under bootstrap resampling of the 2003 data, however the effect of using the 
data from a previous year, as required in practice, cannot be accounted for in this way. To evaluate the 
effect of having data only from previous summers, data from the summer of 2002 are considered. 

From Temperature Probability Forecasts to Demand Allocation: Overview 
For each day of the summer of 2003, the target was to minimize the implied weather-component of 

demand error, subject to the constraint that the total economic loss due to weather-related demand 
forecast error is minimized. The constraint is critical, given the asymmetric nature of the cost curve, 
which was illustrated in figure 2-5 above. Note that the cost of a 4000 MW over-forecast (that is, a 
temperature forecast above the temperature observed) is significantly less than the cost of a 4000 MW 
under-forecast. This implies that even if error distribution in the temperature-dependent demand was 
constant and symmetric about the mean every day (which it is not), then overall cost could be lowered by 
using a demand forecast based on a forecast isopleth greater than the forecast mean value, possibly the 
60% contour (or if the distributions were all Gaussian, then perhaps the median plus a quarter of a 
standard deviation). The reason for this is obvious even if the implementation is not. By regularly paying 
a low cost, one mitigates a number of what would have been very large losses. The next section discusses 
how this is done. 

Performance with Isopleth: An Example 
What follows is an illustrative example of the use of isopleths. Figure 2-9 shows the distribution of the 

MV forecast errors based on the sample of 147 days. The magenta curve reflects a Gaussian distribution 
with same mean and standard deviation as the observed distribution - namely, the mean and standard 
deviation in the summer 2003 season equal -131 (MW) and 1045 (MW). The lower tail is dominated by 
the two under-forecasts on June 16 and 17. The Gaussian is not a very good fit. The sample CDF appears 
steeper than the normal. 
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Figure 2-9. Cumulative Distribution Function for Megawatt Error 

To illustrate the method, imagine if the operator had foreknowledge of the likely Megawatt error 
distribution (probabilistic temperature forecasts give that, as argued below the relationship between 
temperature error and demand error is roughly linear). If the fitted Gaussian distribution was resampled 
and the expected loss computed, the outcome is about 0.135 (differing slightly from the observed loss 
because the distribution is not, in fact, Gaussian). Since the distribution is known, however, one can move 
out on the ‘over-forecast’ side and observe a drop in the expected loss, as shown in figure 2-11. In this 
case, the expected minimum loss occurs at over half a standard deviation. 
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Figure 2-10. Expected Loss as a Function of the Isopleth, Measured in Terms of the Standard Deviation 

Note that figure 2-11 shows the MV forecast error versus the four-region temperature forecast error. 
(The four-region temperature forecast error is the sum of the ((signed)) forecast errors in the four 
regions.) Both the MW errors and the four-region temperature errors are defined as the forecast value 
minus the observed value, so a positive value means an over-forecast. Large positive values often 
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coincide with all 4 regions being over-forecast. Comparing the graph with the table below, the two 
biggest under-forecasts on 16 and 17 June appear not to be obviously temperature related.  

MW error vs Forecast error

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

-30 -20 -10 0 10 20 30 40

temperature error

M
W

 e
rr

or

Series1

 
Figure 2-11. Scatter Plot of MW Error Versus the Sum of the Four (Signed) Cal ISO AVN Regional Temperature  

Forecast Errors.  
The MW errors per day were taken from “Regression Forecaster vs. Observed MW (1).csv” while each regional temperature error was taken 

from “AVN ETA MRF day-ahead forecasts vs. observed[1].csv” 

The five dates with the largest under-forecasts in the summer 2003 season can be identified on the 
figure 2-11. The corresponding dates are: 

Date Under Forecast 
 

16-Jun-03 -4949 
17-Jun-03 -4142 
27-Jun-03 -3626 
28-May-03 -2864 
21-May-03 -2044 

 

Regional Temperature Forecast Results 
In this section new temperature forecasts for each of the regions are calculated. These results are fully 

cross validated (using drop-one-out estimation for each day, given the small data set available). These are 
the ignorance results and error metrics of our six packages, plus our PF1 and PF2 multi-model probability 
forecasts and the Cal ISO AVN as a reference. The major differences to the previous results are: 

 Ignorance is measured against climatology, where climatology is determined from the best fit 
Gaussian to the observed distribution. The climatological distribution is assigned an ignorance score of 
zero (no skill), so the forecast values are now negative numbers, the smaller the ignorance, the better 
the score. 

 The region temperatures are forecasts directly, based on the Cal ISO values provided. The available 
numbers of days in a season are restricted to only those days in which there are both the Cal ISO 
region observations and the relevant forecasts. In summer 2003, in Cal ISO data consists of a total of 
144 days for which observations are available for all four regions. Due to unavailable forecasts, the 
total number of days available in the summer season between May 18 and October 15 differ in the 
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different regions: PG&E Bay area (116 days), PG&E Non Bay area (115 days), San Diego Edison 
(116 days), San Diego Gas & Electric (115 days). 

 Comparisons of forecast performance in the regions between these new retrospective weather forecasts 
and the existing Cal ISO AVN forecasts have been based on the identical set of days in the summer 
2003 season. 

 The package ETA now also contains the ETA MOS point forecast. None of the retrospective package 
has a true model Tmax as predictor. (that is, at this time each value input as a model predictor 
corresponds to a model hour temperature value.) 

PG&E Bay Area 
 

Number Package Bias Standard 
deviation 

Mean rel. 
Ignorance 

Brier Score 
(*1000) 

1 AVN 0.03 3.40 -1.15 7.68 
2 ENS -0.03 6.32 -0.26 2.34 
3 ETA -0.04 4.04 -0.90 5.55 
4 MEM 0.26 6.75 -0.16 2.23 
5 MRF 0.05 5.74 -0.40 2.85 
6 NGMMOS 0.04 4.22 -0.84 5.28 
7 Cal ISO AVN 1.31 4.31 - - 
8 PF1 0.02 3.55 -1.09 7.11 
9 PF2 - - -0.86 4.02 

 

PG&E Non Bay Area 
 

Number Package Bias Standard 
deviation 

Mean rel. 
Ignorance 

Brier Score 
(*1000) 

1 AVN 0.01 1.66 -2.02 35.54 
2 ENS -0.02 3.83 -0.82 6.39 
3 ETA -0.02 1.51 -2.16 41.22 
4 MEM -0.05 4.00 -0.76 5.91 
5 MRF 0.00 3.52 -0.94 7.27 
6 NGMMOS 0.02 2.13 -1.67 20.04 
7 Cal ISO AVN -0.37 2.44 -  
8 PF1 -0.01 1.39 -2.28 48.17 
9 PF2 - - -1.73 17.02 

 

San Diego Edison 
 

Number Package Bias Standard 
deviation 

Mean rel. 
Ignorance 

Brier Score 
(*1000) 

1 AVN -0.02 2.10 -1.64 22.30 
2 ENS 0.06 4.30 -0.61 4.82 
3 ETA -0.06 2.86 -1.20 11.88 
4 MEM -0.10 4.65 -0.50 4.56 
5 MRF 0.01 3.71 -0.82 6.70 
6 NGMMOS 0.02 2.50 -1.39 15.44 
7 CalIso AVN 0.33 2.59 - - 
8 PF1 -0.02 2.04 -1.69 23.53 
9 PF2 - - -1.28 10.21 

 

San Diego Gas & Electric 
 

Number Package Bias Standard 
deviation 

Mean rel. 
Ignorance 

Brier Score 
(*1000) 

1 AVN -0.01 3.39 -1.11 8.16 
2 ENS 0.02 5.22 -0.49 3.18 
3 ETA 0.03 3.82 -0.94 6.78 
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4 MEM -0.19 5.43 -0.43 3.41 
5 MRF 0.03 4.52 -0.70 4.36 
6 NGMMOS 0.01 4.19 -0.80 5.44 
7 CalIso AVN 2.11 3.88 - - 
8 PF1 0.01 3.32 -1.14 8.63 
9 PF2 - - -0.94 5.07 

 

Note that the direct retrospective region forecasts show the same systematic differences in predictability 
in these 4 regions as seen in the Cal ISO AVN forecast. The Bay area is the most difficult to forecast in 
each case. Only in the Bay area does the forecast PF1 not show the best results with respect to three 
forecast metrics standard deviation of error, mean ignorance and Brier Score. Note also that the AVN 
Package and PF1 Package tend to outperform the pure Cal ISO AVN forecast. 

Temperature Isopleth for Bay Area PF1 Forecasts 
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Figure 2-12. The Distribution of Forecast Temperature Isopleths Using PF1 for the Bay Area Over the  

Summer of 2003.  
Only days with full forecast information are shown). The observed Cal ISO region temperature  

is shown in red. Note that by playing a higher-ranking isopleth allows a better upper bound on the temperature. 
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Figure 2-13. As Figure 12, But Showing Variations in the Observed Temperature Within the Isopleths 

Full California Economic Impact Forecast Results 
In this section we translate the temperature forecasts into relative economic impact in millions of 

dollars. (a 50% saving would reflect a real reduction of weather-related costs by half.). The results below 
have been computed by translating the temperature forecast error in each region into a megawatt error 
(with the kind assistance of Dennis Gaushell), and then the four region megawatt error into an economic 
cost for each day using the cost curve of figure 2-5. The target weather-related demand is computed using 
the observed temperatures. 

One Day Ahead Forecasts 
The table below contains the economic costs of using the 50%, 55%, 60%,…isopleth for each of the 

probability forecast packages described in the sections above for the 2003 summer season; only days with 
full forecast availability were used. 

(table rescinded) 
 

The best performance is for the 55% isopleth of PF1, note however that the same isopleth of AVN does 
quite well. These two forecasts score $X and $X respectively, significantly below the Cal ISO AVN value 
of $X for the season. Cal ISO averages only three forecasts, the AVN, ETA and MRF. Thus, their average 
of the three is X. Also, this method allows an improvement in using the AVN forecast results as is, which 
is immediately useful to CalISO as this is the model they operationally use.  

The likely uncertainty of these results has been quantified by bootstrap resample of the days (keeping 
the weekday as weekdays in this case). The table below reproduces the results of the previous table for 
the 50, 55, 60, 65, and 70% isopleths, while including the standard deviation estimated with via the 
bootstrap. The results between models are significant, while the choice between the 60, 55 and 50% 
isopleths is less clear. To investigate the origin of this we consider scatter graphs of the forecasts in detail.  

(table rescinded)  
 

Figures 2-14 and 2-15 contrast the cost of the current Cal ISO forecast with that of the 55% isopleth of 
our AVN probability model, points above the diagonal indicate days on which the AVN 55 line 
outperforms the Cal ISO AVN.  (Note: units normalized in rescinded version.) 

Figure 2-14 shows all the data including two days with major savings, while figure 2-15 contains a 
zoom near the origin which shows that the savings from the AVN 55 line are significant on ‘normal’ days 
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as well as. Note that it is not uniformly better, there are days where the other method has a lower cost, but 
on average the 55% isopleth of AVN is clearly better. 
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Figure 2-14. Scatter Diagram of Cal ISO AVN Against the 55% Isopleth of Our AVN; Each Point Represents One Day.  

The full range of the data are shown. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Cost of AVN 55% (arbitrary units)

C
os

t o
f C

al
 Is

o 
A

VN
 (a

rb
itr

ar
y 

un
its

)

 
Figure 2-15. Scatter Diagram of Cal ISO AVN Against the 55% Isopleth of Our AVN;  

Each Point Represents One Day.  
A zoom near the origin is shown; Note that there are many days where one or the other  

of the forecasts scores zero cost. 

Finally we contrast the 50% isopleth of our AVN model with the 55% isopleth of the same model. Note 
on the large scale graph (figure 2-16) that again there are costly points well above the diagonal, indicating 



 
 

Economic Benefit of Incorporating Weather & Climate Forecasts into Western Energy:  Deliverable 4 2-20 

that the 55% isopleths does better on these days. The cost for this is over supply on days when the 
observed temperature is near the forecast mean. This is more clearly seen in figure 2-17, which shows a 
zoom. 
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Figure 2-16. Scatter Diagram of 50% Isopleth Against the 55% Isopleth of Our AVN 
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Figure 2-17. Scatter Diagram of the 50% Isopleth Against the 55% Isopleth of Our AVN; Each Point Represents One Day. 

This graph is a zoom near the origin. 

Note in figure 2-17 that many days lie below the diagonal. Thus on the major under forecast days the 
55% isopleth pulls significantly ahead. Four examples are shown in figure 2-17, a few even larger 
deviations are shown in figure 2-16. 
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Two Day Ahead Forecasts 
Moving to two day ahead forecasts requires a new statement of the components which go into the PF 

models,  

 
The corresponding temperature forecasts for each region and each Package are shown in the following 

4 tables, again PF1 and our AVN package show the best performance, although the other PF packages, 
including PF% sometimes score well. 

PG&E Bay Area Summer 2003 48 Hours 
 

Number Package Bias 
Standard 
Deviation 

Error 
Mean rel. 
Ignorance 

Bootstrap 
Deviation 
Ignorance 

Brier Score 
(*1000) 

Bootstrap 
Deviation 

Brier Score 
1 AVN 0.00 4.63 -0.71 0.09 4.43 0.23 
2 ENS 0.00 7.25 -0.06 0.07 1.72 0.06 
3 ETA new 0.00 5.02 -0.59 0.09 3.71 0.17 
4 MEM 0.00 6.94 -0.12 0.05 1.88 0.07 
5 MRF 0.00 6.05 -0.32 0.08 2.48 0.14 
6 NGMMOS 0.00 4.68 -0.69 0.10 4.21 0.21 
7 ENS new 0.00 6.42 -0.24 0.06 2.21 0.09 
8 PF1 0.01 4.29 -0.82 0.11 4.96 0.23 
9 PF2 - - -0.56 0.04 2.65 0.09 
10 PF3 - - -0.60 0.04 2.82 0.10 
11 PF5 - - 1.46 0.62 14.15 2.21 
12 Cal ISO - - - - - - 

 

PG&E Non Bay Area Summer 2003 48 Hours 
 

Number Package Bias 
Standard 
Deviation 

Error 
Mean rel. 
Ignorance 

Bootstrap 
Deviation 
Ignorance 

Brier Score 
(*1000) 

Bootstrap 
Deviation 

Brier Score 
1 AVN 0.01 2.59 -1.38 0.06 13.62 0.51 
2 ENS 0.01 4.28 -0.65 0.08 5.02 0.24 
3 ETA new 0.01 2.95 -1.19 0.08 11.01 0.46 
4 MEM 0.00 4.56 -0.56 0.10 4.44 0.23 
5 MRF 0.01 4.03 -0.74 0.09 5.48 0.31 
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6 NGMMOS 0.01 3.14 -1.10 0.09 9.46 0.41 
7 ENS new 0.01 3.99 -0.76 0.07 5.75 0.21 
8 PF1 0.01 2.61 -1.37 0.07 13.96 0.54 
9 PF2 - - -1.09 0.04 6.96 0.25 
10 PF3 - - -1.15 0.04 7.58 0.26 
11 PF5   -1.27 0.10 19.99 1.41 
12 Cal ISO   - - - - 

 

San Diego Edison Summer 2003 48 Hours 
 

Number Package Bias 
Standard 
Deviation 

Error 
Mean rel. 
Ignorance 

Bootstrap 
Deviation 
Ignorance 

Brier Score 
(*1000) 

Bootstrap 
Deviation 

Brier Score 
1 AVN 0.01 3.33 -0.97 0.09 8.76 0.36 
2 ENS 0.00 4.92 -0.41 0.10 3.94 0.23 
3 ETA new 0.01 3.66 -0.84 0.10 7.23 0.37 
4 MEM 0.00 4.73 -0.46 0.08 4.34 0.19 
5 MRF 0.01 4.20 -0.64 0.07 5.38 0.20 
6 NGMMOS 0.01 3.35 -0.96 0.10 8.93 0.48 
7 ENS new 0.01 4.23 -0.63 0.10 5.33 0.28 
8 PF1 0.01 3.18 -1.04 0.09 9.76 0.39 
9 PF2 - - -0.86 0.07 5.76 0.26 
10 PF3 - - -0.89 0.07 6.02 0.25 
11 PF5 - - -0.88 0.19 16.49 1.79 
12 Caliso - - - - - - 

 

San Diego Gas and Electric Summer 2003 48 Hours 
 

Number Package Bias 
Standard 
Deviation 

Error 
Mean rel. 
Ignorance 

Bootstrap 
Deviation 
Ignorance 

Brier Score 
(*1000) 

Bootstrap 
Deviation 

Brier Score 
1 AVN 0.01 4.24 -0.75 0.10 5.17 0.35 
2 ENS 0.00 5.18 -0.46 0.08 3.29 0.19 
3 ETA new 0.00 4.49 -0.67 0.09 4.53 0.24 
4 MEM 0.00 4.89 -0.55 0.07 3.66 0.20 
5 MRF 0.00 4.89 -0.55 0.08 3.76 0.18 
6 NGMMOS 0.00 4.38 -0.71 0.07 4.86 0.23 
7 ENS new 0.00 4.98 -0.52 0.07 3.52 0.17 
8 PF1 0.01 3.95 -0.86 0.07 6.06 0.23 
9 PF2 - - -0.70 0.06 3.86 0.17 
10 PF3 - - -0.71 0.05 3.90 0.16 
11 PF5 - - -0.34 0.30 11.17 0.90 
12 Caliso - - - - - - 

 

The minimum cost isopleth for day 2 is at 65%, this represents moving even further out on the tail of 
the distribution in the attempt to avoid the cost of under-forecasting. These results are based on the 137 
days in the 2003 season for which the forecasts could be build and analyzed. Bootstrap standard 
deviations are determined from 1000 resamplings. 

           
 

(costs 
rescinded) 
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The next two graphs, figures 2-18 and 2-19, again plot the weather related cost on a given day ‘best’ 
isopleth (in this case 65%) against the cost on the same day of using the 50% isopleth. The outlier is the 
28 of May, which has been removed on the zoom. The same pattern is evident that appeared on the one 
day case. The strategy accepts regular, relatively small, loses but then mitigates the occasional large loss. 
Note from the 65STD column in the table that the uncertainty in skill is fairly large: several of the PF 
packages and the AVN package are well within the bootstrap resampling standard deviation, the statistics 
being dominated by a few days with very high potential losses. 
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Figure 2-18. Scatter Diagram of AVN 50% Against the AVN 65% 



 
 

Economic Benefit of Incorporating Weather & Climate Forecasts into Western Energy:  Deliverable 4 2-24 

2003   day 2 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

AVN 65%

A
VN

 5
0%

 
Figure 2-19. Scatter Diagram (Zoom) of AVN 50% Against the AVN 65% 

Forecasts and Errors of 2002 with AVN – SVD Fitted to 2002 and 2003 
This section shows that the predictions based on a different year are slightly less accurate than 

predictions based on the same year. 2002 and 2003 are contrasted, first forecasting 2002 with models built 
on the 2002 data, and one build on the 2003 data. Based on these results, it appears that a combination of 
the previous summer data and the current summer (starting, for example, in April) can be used. The 
current year April data should be monitored carefully to see if there have been any major changes in any 
of the models. This monitoring should continue throughout the summer, the model being updated daily to 
include the new observations and corresponding forecast (that is, the parameters are refit each day). 

Forecasting 2002 RMSE BIAS 
 

 Model from 2002 1.59 0.00 
 Model from 2003 3.42 0.82 
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Figure 2-20. 50% Isopleth Prediction for Bay Area in 2002 

Figure 2-20 shows the 50% isopleth predictions made for each day in 2002. The x-axis is the prediction 
using the 2002 model and the y-axis that using the 2003 model. For smaller temperatures, the predictions 
scatter about the diagonal, which indicates the model(s) generalise from one summer to another. For the 
higher predicted temperatures, however, the 2003 model is consistently higher than the 2002 model. 
Given there are only 54 days with complete data, it is difficult to break these results down into further 
sub-categories. Figure 2-21 shows a zoom of figure 2-20. 
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Figure 2-21. 50% Isopleth Prediction (Zoom) for Bay Area in 2002 

Forecasts of 2003 with AVN – SVD fitted to 2002 and 2003 
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The table and graphs (figures 2-22 and 2-23) below repeat this analysis, but this time the forecasting of 
the 2003 data from models built using the 2003 data (drop-one-out) and a model based on all the 2002 
data. 

Forecasting 2002 RMSE BIAS 
 

 Model from 2002 4.17 -0.63 
 Model from 2003 3.35 -0.01 
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Figure 2-22. 50% Isopleth for Bay Area 2003 

Note the model-2003 systematically forecasts more extreme values than model-2002. This is consistent 
with the negative bias of model-2002. 
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Figure 2-23. 50% Isopleths (Zoom) for Bay Area 2003 

Observed demand versus 1,2,3 day forecast demand by month. 

The graphs below show, on the same grid, one, two and three day forecasts. The aim is to allow an 
operator to see what would have happened if they had made a demand forecast a few days earlier, as for 
example over the weekend. The weekends are spotted as the low demand days; not that on the Bay area 
Mondays, the 3 day forecasts is rather similar to the one day in the May/June period shown, whereas the 
three day forecasts appear worse, especially for the AVN, in July. Note that for the one day lead time 
forecasts the 55% isopleth is used, while at days two and three the 65% isopleth is used (in each case, we 
use the optimal isopleth for that model for that lead time optimised over the entire summer season of the 
same year.) 
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Figure 2-24. May June 2003 AVN 
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PF1  Bay Area Demand forecasts day 1, 2, 3  in 2003
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Figure 2-25. May-June 2003 PF1 
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Figure 2-26. July 2003 AVN Bay Area 
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Figure 2-27. July 2003 PF1 Bay Area 
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Function i) from Temperature to Demand (MW) 
The following is a piece of code based upon the formulas Cal ISO uses. Note that demand is a quadratic 

function of temperature with different parameters in the four regions, as well as distinguishing workdays 
and holidays. This code translates from temperature to demand. 

 
 

Ignorance as a Function of Time 
Figures 2-28 and 2-29 show the ignorance of the worst and the best regions, specifically BAY and 

NBAY respectively. It is interesting to note that PF5 performs very poorly in the Bay area, having 
positive ignorance (that is, worse than climatology) from day two, while in the non-Bay region PF5 
performs similarly to PF3. 

Overall, note that PF1 does well (if not best) in terms of ignorance score in all cases, while AVN is 
similarly good. 
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Figure 2-28. Ignorance of Bay 2003 
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Figure 2-29. Ignorance of Non Bay 2003 

RMSE as a Function of Time 
Figures 2-30 and 2-31 show the RMSE of the worst and the best areas (BAY and NBAY). Models PF3 

and PF5 do not produce an RMSE error (they are explicitly distribution forecast models). It is interesting 
to note that the NCEP IC-ensemble mean is NOT significantly better that the other forecasts. Note that 
PF1 scores about the same as the AVN Package in the Bay Region, but systematically better in the non-
Bay region at longer lead times. 
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Figure 2-30. RMSE of Bay 
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Figure 2-31. RMSE of Non Bay 

Optimal Quantile as a Function of Time, for Lead Times One to Three 
The table below shows the optimal quantile (OQ), specifically the isopleth that minimizes the cost over 

the summer of 2003 (thus it is not out-of-sample). The larger the value, the farther out on the tail the 
optimal isopleth is located; under each model this quantity usually increases with lead time, that is, the 
further in the future the higher the optimal isopleth is from the median. 

Note, this is derived from the cost which is averaged over all four areas 

Lead OQ  
AVN 

OQ 
PF1 

OQ 
PF3 

OQ 
PF5 

 

1 55 55 60 70 
2 65 65 70 70 
3 65 65 70 85 

 

Offset (Safety Factor) in Temperature as a Function of Time  
The optimal quantile corresponds to a temperature greater than that of the median (that is, the 50% 

isopleth). The difference between the temperature at the optimal isopleth and that at the 50% isopleth is 
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effectively a safety factor that serves as temperature excess on most days. For the AVN package and PF1 
this is a constant value; for PF3 and PF5 this value changes from day to day (and the number in the table 
below is an average over the 2003 summer dates.) 

Note, this is just for the BAY area.  

Lead AVN PF1 PF3 (average 
value) 

PF5 (average 
value) 

 

1 0.43 0.43 1.00 3.05 
2 1.79 1.67 2.67 3.36 
3 2.00 2.03 2.85 6.95 

 
Three Tables showing cost by model by quantile for day 1, 2 and 3. 

(table rescinded) 
 

(table rescinded) 
 

(table rescinded) 
 
 

The minimum cost (in unknown units of dollars) per model is shown in magenta for each model. The 
absolute minimum over all models is shown in yellow. Note that AVN-Package wins for day 2 and 3, for 
day 1 PF1. Note, the NGM model is not available for the 3 day forecast. 

Economic Benefits Relative to Costs of Procuring Operational Ensemble Predictions 
The expected benefits of the forecasts of moving to ensemble methods are substantial. 
They carry with them two increased costs: First the full forecast suite must be obtained, not merely the 

AVN forecast. Secondly, significantly more information processing must be done on these inputs. In 
addition to the direct costs, there is the additional operational requirement for robust response in case one 
or more of the forecast models is not available on a given day. 

Three forecast information providers gave estimated costs for the full model suite required by PF1. 
Expected prices varied a great deal, especially regarding volume discounts, but the range of values for 20 
stations, full forecast suite two times per day, over a period of six months ranged from about $5,000 to 
$50,000. Even the high end of this range is significantly less than the expected savings from reduced 
weather related demand forecast errors. 

Conclusion 
There is clearly significant benefit in using existing ensemble of weather forecast models towards 

significantly reducing Cal ISO exposure to weather related demand forecast errors; relative the current 
method (here after called the standard method) of using the AVN T_max forecasts the weather-related 
costs of the 2003 test period can be cut in half. 

This improvement comes from two sources. Firstly weather information is not taken at face value, but a 
number of forecasts from each model are combined, via singular value decomposition, to determine a 
better point forecast based on that model. Hence our AVN_Package forecast used more input information 
than merely the AVN T_max, and hence it too significantly outperforms the standard method, which is 
also based on AVN output. Secondly, our approach constructs a forecast distribution, not a single number. 
This allows us to incorporate Cal ISO’s highly asymmetric cost function in a systematic way. Each 
distribution consists of levels, called isopleths. By determining empirically which isopleth yields the best 
balance between overproduction and underproduction, knowledge of uncertainty in the ensemble 
forecasts is used to systematically set the “safety margin”. This approach allows one to quantify weather 
related demand forecast confidence in a more quantitative and automatic manner at a relatively low cost. 
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A multi-model ensemble using the 55% isopleth of the forecast distribution provided the most useful 
forecasts. This model takes as input several variables at each station from each of the numerical weather 
prediction models available from quantumweather. The cost of the raw inputs varies with supplier, but is 
several orders of magnitude less than the savings based on the 2003 summer data.  

These results are significant under bootstrap testing, and cross validation on a limited amount of data 
from 2002 (that is, using the model constructed using 2003 data to forecast 2002 demand) indicated that 
one should expect skill in true out-of-sample demand forecasting. All initial model selections were done 
under drop-one-out cross-validation (rebuilding the model for the entire summer to forecast each day so 
that data on this date is not included when forecasting that day) and the bootstrap significance levels are 
quoted in the tables. 
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Appendix 1: Target Weather Stations and Weights 
The table below summarizes current data on the stations originally defined by Cal ISO. The columns 

indicate whether or not forecast products for that station are available from QuantumWeather, which 
alternative stations have been identified if not forecast products are available; a description of the station, 
its location and WMO identifier; and whether or not observations for that station were included on the 
“CAL ISO data 2/18/2004” CD. 

 
Statements of input variables for AVN and PF1 

AVN 
The AVN package uses the 18 and 21 hour lead time forecasts verifying on the next day at 18:00 and 

21:00 UTC (verifying California local time 10:00 and 13:00) from the two ‘models’ called AVN and 
AVN_MOS.  

Package 
No No Model Number of 

Predictors 
Model 

run time 
1 

Delay 1 UTC time 
1 

Model run 
time 2 Delay 2 UTC time 

2 
 

1 avn 2 18 0 18 21 0 21 1 2 avn_mos 2 18 0 18 21 0 21 
 

PF1 
PF1 uses as input the forecasts from packages 1-6. In order to produce statistical forecasts for the 6 

packages the following numerical forecast products are needed: 
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The AVN package: 18 and 21 hour lead time forecasts verifying on the next day at 18:00 and 21:00 
UTC (verifying California local time 10:00 and 13:00) from the two ‘models’ called AVN and 
AVN_MOS.  

The ENS package: the 24 hour lead time forecast verifying 0:00 UTC time next day ( = 16:00 local 
time) of the control, mean, max, min, mean plus and minus a standard deviation, or the whole ensemble. 

The ETA package: 18 and 21 hour lead time forecasts verifying on the next day at 18:00 and 21:00 
UTC (verifying California local time 10:00 and 13:00) from the two ‘models’ called ETA and 
ETA_MOS.  

The MEM package: the 24 hour lead time forecast verifying 0:00 UTC time next day ( = 16:00 local 
time) of the control, mean, max, min, mean plus and minus a standard deviation, or the whole ensemble. 

The MRF package: the 24 hour lead time forecast verifying 0:00 UTC time next day ( = 16:00 local 
time) of the two models called MRF and MRF_MOS. 

The NGM package: 18 and 21 hour lead time forecasts verifying on the next day at 18:00 and 21:00 
UTC ( = 10:00 and 13:00 local time) from the ‘model’ called NGM_MOS. 

Package 
No No Model Number of 

Predictors 
Model 

run time 
1 

Delay 1 UTC time 
1 

Model run 
time 2 Delay 2 UTC time 

2 
 

1 avn 2 18 0 18 21 0 21 
2 avn_mos 2 18 0 18 21 0 21 1 
3 avnext 0       

2 4 ens 1 24 0 0    
 5 ens_max 1 24 0 0    
 6 ens_mean 1 24 0 0    
 7 ens_min 1 24 0 0    
 8 ens_sdn 1 24 0 0    
 9 ens_sdp 1 24 0 0    
3 10 eta 2 18 0 18 21 0 21 
 11 eta_mos 2 18 0 18 21 0 21 
4 12 mem 1 24 0 0    
 13 mem_max 1 24 0 0    
 14 mem_mean 1 24 0 0    
 15 mem_min 1 24 0 0    
 16 mem_sdn 1 24 0 0    
 17 mem_sdp 1 24 0 0    
5 18 mrf 1 24 0 0    
 19 mrf_mos 1 24 0 0    
6 20 ngm_mos 2 18 0 18 21 0 21 

 
List of stations used  

PG&E Bay 
Area 

PG&E No 
Bay Area SCE SDGE 

 

KSFO KSTS KLAX KNFG 
KOAK KPRB KFUL KSAN 
KLVK KRDD KONT KNJK 
KSJC KMYV KPSP KSEE 
KCCR KMCE KWJF  

 KBFL   
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Appendix 2: Model Sources and Characteristics 

Source Weather Model 
Name 

Old 
Model 
Name 

Intra-day 
runtimes 

Forecast 
Variable 

Forecast 
time step 

Forecast 
Duration Web Description 

 

1 NWS ETA  0z, 6z, 12z, 
18z, 

2m Temp  3hrs 84 hrs http://www.emc.ncep.no
aa.gov/modelinfo/index.
html 

2 NWS ETA MOS  0z,12z 2m Temp  3 hrs beyond 
hr 6 

72 hrs http://www.nws.noaa.go
v/mdl/synop/metcard.ht
m 

3 NWS NGM MOS  0z,12z 2m Temp  3 hrs beyond 
hr 6 

60 hrs http://www.nws.noaa.go
v/mdl/synop/fwcexpln.ht
m 

4 NWS GFS MOS AVN MOS 0z, 6z, 12z, 
18z, 

2m Temp  3 hrs beyond 
hr 6 

72 hrs http://www.nws.noaa.go
v/mdl/synop/mavcard.ht
m 

5 NWS GFS  AVN 0z, 6z, 12z, 
18z, 

2m Temp  3hrs up to 
180, 12 hrs 
beyond 180 

384 hrs http://www.emc.ncep.no
aa.gov/modelinfo/index.
html 

6 NWS GFS Ensemble- 
Control (or simply 
ENS) 

MRF ENS 0z,12z 2m Temp  12 hrs 384 hrs http://www.emc.ncep.no
aa.gov/modelinfo/index.
html 

7 NWS GFS Ensemble- 
Mean 

 0z,12z 2m Temp  12 hrs 384 hrs  

8 NWS GFS Ensemble- +1 
std 

 0z,12z 2m Temp  12 hrs 384 hrs  

9 NWS GFS Ensemble- - 
1std 

 0z,12z 2m Temp  12 hrs 384 hrs  

10 NWS GFS Ensemble- 
Max 

 0z,12z 2m Temp  12 hrs 384 hrs  

11 NWS GFS Ensemble- 
Min 

  0z,12z 2m Temp  12 hrs 384 hrs  

12 NWS GFS Ensemble 
MOS Control (or 
simply ENS MOS) 

MRF ENS 
MOS 

0z 2m Temp  12 hrs 
beyond hr 24 

192 hrs http://www.nws.noaa.go
v/mdl/synop/enstxt.htm 

13 NWS GFS Ensemble 
MOS Mean 

 0z 2m Temp  12 hrs 
beyond hr 24 

192 hrs  

14 NWS GFS Ensemble 
MOS +1 std 

 0z 2m Temp  12 hrs 
beyond hr 24 

192 hrs  

15 NWS GFS Ensemble 
MOS - 1std 

 0z 2m Temp  12 hrs 
beyond hr 24 

192 hrs  

16 NWS GFS Ensemble 
MOS Max 

 0z 2m Temp  12 hrs 
beyond hr 24 

192 hrs  

17 NWS GFS Ensemble 
MOS Min 

  0z 2m Temp  12 hrs 
beyond hr 24 

192 hrs  

18 NWS MRF  0z 2m Temp  12 hrs 384 hrs http://www.emc.ncep.no
aa.gov/modelinfo/index.
html 

19 NWS GFSX MOS MRF 
MOS 

0z 2m Temp  12 hrs 
beyond hr 24 

192 hrs http://www.nws.noaa.go
v/mdl/synop/mexcard.ht
m 
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