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1. Climate Forecasting of Irrigation Power Loads in Climate  
Division 9 and The Economic Value to PacifiCorp 

1.1 Introduction and Overview1 
The objective of this case study is to demonstrate the scientific and economic value of a 

climate derived irrigation load forecast for a section of the PacifiCorp service territory and the 
economic value in making such a forecast. Predicting irrigation pump loads is a critical seasonal 
summer forecasting issue in order to anticipate when the pumps will be turned on in the spring or 
early summer. There are considerable economic advantages in predicting in advance the timing 
and duration when irrigation will commence as this has significant impacts on the costs to 
PacifiCorp in terms of the amount of peak demand that should be planed for. In addition, the 
supply scheduling and timing of the load is also important. Generally, the more accurate such 
predictions are in terms of timing and duration, the more economical power supply purchases 
will be and the greater the opportunity for PacifiCorp to plan for grid power flow and disposition 
of the unused energy on its system.  

Historically, PacifiCorp has not done any forecasting of irrigation pump loads. From a climate 
point of view, many factors contribute to the timing of the onset of load demands, including soil 
moisture value, the crops planted, seasonal precipitation, etc. This report relies on a climate and 
statistical regression model for predicting when irrigation load will occur. The economic value of 
predicting this load is also presented.  

1.2 PacifiCorp Service Area 
PacifiCorp service area extends for 136,000 

square miles with 15,000 miles of transmission, 
44,000 miles of overhead distribution and 12,000 
miles of underground cable. PacifiCorp’s 53 
hydropower facilities are located in Washington, 
Oregon, Idaho, Utah and Montana. With a total 
generating capacity of 1,078 megawatts (mw) of 
electricity,2 PacifiCorp has more than 8,300 
megawatts of generation capacity from coal, 
hydro, renewable wind power, gas-fired com-
bustion turbines and geothermal and serving 
more than 1.5 million customers. PacifiCorp 

operates as Pacific Power in Oregon, Washing-
ton, Wyoming and California; and as Utah 
Power in Utah and Idaho (figure 1-1). 

1.3 Data 
The data used for irrigation loads are from 

PacifiCorp internal records over the period 1997-
2003. One of the limitations of the analysis is the 
short record of irrigation pump load data. The air surface temperature data used was from two 

                                                                 
1 This section is derived from an earlier technical paper entitled, “Some relationships between the irrigation pumping loads and 

the local climate in Climate Division 9, Idaho”, written by Eric J. Alfaro, A. Gershunov, David Pierce, and Anne Steinnemann 
of the Scripps Institution of Oceanography, with selected edited contributions by Science Applications International 
Corporation (SAIC). 

2 Meeting with PacifiCorp staff, including Mr. R. Davis 

 
Figure 1-1. Map of PacifiCorp’s Service Area 

Source: PacifiCorp 
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sources: a) Idaho’s Climate Division #9, Upper Snake River Plains, (Record: 1932 – 2003, Lat: 
43.83° N, Lon: 112.82° W) and b) station Idaho Falls 46W, (Record: April 1st, 1954 – December 
31st, 2001, ID: 104460, Lat: 43.52° N, Lon: 112.93° W, Elev: 1505 masl) from the National 
Climatic Data Center (NCDC) first order and cooperative observed data (NCDC, 2003). Soil 
moisture data was also analyzed for the same climate division (accessed at 
ftp://ftp.ncep.noaa.gov/pub/cpc/wd51jh). Soil moisture is estimated by a one-layer hydrological 
model (for details about the soil moisture data see Huang et al., 1996, van den Dool et al., 2003). 

The model uses this equation for water balance: dw/dt=P-E-R-G, where the equation is applied 
locally and w is the soil moisture in a single column of 1.6 m depth, P is precipitation, E is 
evaporation, R is runoff and G is loss of ground water. The model parameters are estimated using 
observed precipitation, temperature and runoff in Oklahoma (1960-1989) and then applied to the 
entire United States. The calculations are done using monthly data for 344 U.S. Climate 
Divisions during 1932 to present. The NOAA-Climate Prediction Center monitors U.S. soil 
moisture using this model (http://www.cpc.ncep.noaa.gov/soilmst/; downloadable at: 
ftp://ftp.ncep.noaa.gov/pub/cpc/wd51jh.)  

Calculations were also carried out using PDSI data with very similar results. The Palmer 
Drought Severity Index (PDSI) is a standard way to quantify the severity of drought conditions 
using a supply and demand model for the amount of moisture in the soil. The value of the PDSI 
is reflective of the how the soil moisture compares with normal conditions. A given PDSI value 
is usually a combination of the current conditions and the previous PDSI value, so the PDSI also 
reflects the progression of trends, whether it is a drought or a wet spell. That means that a single 
PDSI value is not representative of just the current conditions, but also of recent conditions.  

The combination of various soil moisture conditions, precipitation, and non-climate factors 
(such as the mix of planted crops and the cost of irrigation) contribute to large year to year 
variability in pump loads, as is shown from PacifiCorp data in Figure 1-2. Our primary goal is to 
predict the average summer season pump load. 

 
Figure 1-2. Normalized Irrigation Pump Loads Verses Day of the Year From Idaho Falls ID (Data from PacifiCorp) 
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1.4 Results 
Several authors have described the relationship between the air surface temperature and soil 

moisture and also its potential use in prediction (e. g. Huang et al., 1996; van den Dool et al., 
2003). Figure 1-3 shows the annual time series for soil moisture and the mean temperature in 
climate division 9, Idaho for different seasons. There are negative correlations between previous 
(panel b) and simultaneous (panel a) soil moisture values and May, June, July, and August 
(MJJA) mean air temperature (Tmean; figures 1-3a and 1-3b). There is a positive correlation 
between February–March (FM) and MJJA soil moisture (figure 1-3c). 

a) 

 

b) 

 

c) 

 
Figure 1-3. Time Series Plotting for Soil Moisture and Mean Temperature in Climate Division 9, Idaho for Different 

Seasons. a) MJJA-Soil Moisture and MJJA-Tmean, r = -0.64. b) MJJA- Soil Moisture and MJJA-Tmean, r = -0.32. c) FM and 
MJJA Soil Moisture, r = 0.70. All the correlation values have statistical significance greater than the 95% level. 

Table 1-1 shows the contingency analysis between soil moisture and Tmean in Idaho climate 
division 9. Panel a) shows a prediction of summer temperatures given spring soil moisture 
conditions. The most likely scenario given below (above) normal FM-soil moisture conditions is 
above (below) normal MJJA-Tmean conditions (see the upper right and lower left values in table 
1-1a). This relationship can be understood by examining table 1-1, panels b) and c). Panel b) 
shows that there is a strong simultaneous relationship between dry soil conditions and hot 
temperatures, while panel c) shows that dry spring conditions tend to persist through mid 
summer. Taken together, the physical picture indicated is that dry spring conditions persist to 
mid summer, at which time the dry land cannot moderate temperatures on extreme summer hot 
days. Similar results were obtained using the station Idaho Falls 46W, finding even stronger 
relationships between the MJJA-Tmean and the previous FM and MJJA soil moisture, but for the 
period 1954-2001 (figure 1-4 and table 1-2). 

a) 

 

b) 

 

c) 

 
Figure 1-4. Time Series Plotting for Soil Moisture and Mean Temperature for Different Seasons. a) MJJA-Soil Moisture and 
MJJA-Tmean, r = -0.72, b) MJJA-Soil Moisture and MJJA-Tmean is -0.43 (Figure 1-1b) and 1-1c) FM and MJJA Soil Moisture, r 

= 0.70. Soil moisture data are for climate division 9 and Tmean data are for the station Idaho Falls 46W, 1954-2001. All the 
correlation values have statistical significance greater than the 95% level. 
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Table 1-1. Contingency Analysis Between a) FM-Soil Moisture, and MJJA-Tmean, b) MJJA-Soil  
Moisture and MJJA-Tmean and c) FM-Soil Moisture and MJJA-Soil Moisture. All data are for climate  

division 9, 1932-2003 (α = 0.01 => ***, 0.05 => **). 
a)  (< 61.4 °F) Tmean-MJJA (> 62.2 °F) 

  BN N AN 
Soil Moist. BN 

(< 156.0 mm) 
21** 33 46** 

FM N 33 38 29 
 AN 

(> 190.8 mm) 
46** 29 25 

 

b)  (<61.4 °F) Tmean-MJJA (>62.2 °F) 
Soil Moist.  BN N AN 
Clim. Div. 9 BN 

(<137.0 mm) 
17*** 20** 63*** 

MJJA N 20** 51** 29 
 AN 

(>178.7 mm) 
63*** 29 8*** 

 

c)  (< 137.0 mm) Soil Moist.-MJJA (> 178.7 mm) 
Soil Moist.  BN N AN 
Clim. Div. 9 BN 

(< 156.0 mm) 
67*** 25 8*** 

FM N 29 37 34 
 AN 

(> 190.8 mm) 
4*** 38 58*** 

 
Table 1-2. Contingency Analysis Between a) FM-Soil Moisture and MJJA-Tmean, b) MJJA-Soil  

Moisture and MJJA-Tmean and c) FM-Soil Moisture and MJJA-Soil Moisture. Soil Moisture data are for climate  
division 9 and Tmean data are for the station Idaho Falls 46W, 1954-2001 (α = 0.01 => ***, 0.05 => **). 

a)  (< 61.2 °F) Tmean-MJJA (> 62.0 °F) 
Soil Moist.  BN N AN 
Clim. Div. 9 BN 

(< 154.9 mm) 
6*** 44 50** 

FM N 38 37 25 
 AN 

(> 200.2 mm) 
56*** 19 25 

 

b)  (< 61.2 °F) Tmean-MJJA (> 62.0 °F) 
Soil Moist.  BN N AN 
Clim. Div. 9 BN 

(< 138.9 mm) 
6*** 31 63*** 

MJJA N 19** 50** 31 
 AN 

(>185.1 mm) 
75*** 19** 6*** 

 

c)  (< 138.9 mm) Soil Moist.-MJJA (> 185.1 mm) 
Soil Moist.  BN N AN 
Clim. Div. 9 BN 

(< 154.9 mm) 
63*** 31 6*** 

FM N 37 25 38 
 AN 

(> 200.2 mm) 
0*** 44 56*** 

 

There is also a simultaneous relationship between the sum of the MJJA normalized electrical 
load values (i.e., total summer electrical load) and the Idaho’s climate division 9 Tmean/Soil 
Moisture values for the 1997-2003. Figure 1-5 shows that when negative (positive) Soil 
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Moisture (Tmean) anomaly values were observed the loads were above or equal to the median 
and when positive (negative) Soil Moisture (Tmean) anomaly values were observed the loads 
were under the median.  

The results shown in figure 1-5 and tables 1-3 and 1-4, suggest that previous soil moisture or 
Tmean data could be used as predictors for the loads associated within pumping during MJJA. 
PacifiCorp has expressed that the achievement of predictive relationships by the beginning of 
April are desirable. For this purpose, a stepwise routine was used to identify predictive linear 
regression models between various parameters. For predictors, previous values of various 
climate indices (for example DJF-Pacific Decadal Oscillation and Southern Oscillation Index) 
and variables (for example FM-Tmean and Soil Moisture) were examined. For the predictand, 
the sum of the MJJA normalized load data was used. Only soil moisture anomalies during the 
previous FM and February were retained as predictors for the MJJA loads estimation. These 
models could be summarized by the following equations: 

a) 

 

b) 

 
Figure 1-5. Scatter Plots Between the Sum of the MJJA Normalized Load Values Versus a) MJJA-Soil  

Moisture and b) MJJA-Tmean (red asterisks, 1997-2003). Vertical blue lines are for the zero anomaly value and  
the horizontal ones are for the load’s median value. 

( )FMMoistSoilY .211.0863.62ˆ −=  (1), and, 

( )..202.0917.63ˆ FebMoistSoilY −=  (2), 

where Ŷ  is the estimated value of MJJA loads. The model statistics are summarized in table 1-3. 
Equations (1) and (2) show models with negative correlations between the soil moisture 
anomalies and the load values, so negative (positive) soil moisture anomalies during the previous 
FM or February tends to be related with the latest (earliest) load data as is presented in Fig. 4. 
This is also in agreement with the simultaneous relationship (figure 1-5a). This signifies that 
under a wet soil moisture scenario, less water is pumped as the crops do not need to be irrigated 
as much as under a dry soil moisture scenario. The reason for this could be again persistence of 
the FM-soil moisture conditions through MJJA. A similar result is obtained if MJJA-soil 
moisture anomalies are used in regression as an independent variable (eq. 3, see also figure 
1-6a): 

( )MJJAMoistSoilY .164.0757.62ˆ −=  (3), 

where Ŷ  is the estimated value of MJJA loads as before. Figure 1-6b also suggests that positive 
(negative) MJJA-Tmean anomalies tend to be related to the latest (earliest) load data. This means 
that under a wet soil moisture scenario, less water is pumped as there is less evapotranspiration 
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from the plantations due to the below than normal temperatures and under a dry soil moisture 
scenario, evapotranspiration is elevated due to above normal temperatures (see tables 1-1 and 
1-2). 

a) 

 

b) 

 
Figure 1-6. Scatter Plots Between the Sum of the MJJA Normalized Load Values Versus a) FM-Soil Moisture  
and b) Feb.-Soil Moisture (Red Asterisks, 1997-2003). Vertical blue lines are for the zero anomaly value and the  

horizontal ones are for the load’s median value. 

Table 1-3. Statistics Associated to the Models Described in the Equations (1)-(3). The Skill, Mean  
Absolute Deviation and Maximum Absolute Deviation values where obtained by cross validation. All the Skill  

values have statistical significance greater than the 95% level. 
 Equation Number 

  

Statistics (1) (2) (3) 
R 0.86 0.86 0.82 
R2 0.74 0.74 0.67 
Skill 0.76 0.76 0.64 
Mean Absolute Deviation (MAD) 4.37 4.56 5.60 
Maximum Absolute Deviation 11.52 11.08 15.06 

 
The observed and estimated values for all the models are plotted in figure 1-7. Notice that the 

maximum absolute deviations described in table 1-2 are for the year 2001. In the figures 1-7a 
and 1-7b the estimate for the year 2004 is also included. Both estimated values are greater than 
the median for the 1997-2003 period, related to the dry conditions observed during last February 
and March, but the confidence interval for this estimate is large, mainly due to the small sample 
size used (7 years).  

a) b) c) 

Figure 1-7. Observed and Estimated Values for the Models Described in the Equations a) (1), b) (2) and c) (3).  
The red dots in a) and b) are the 95% statistical confidence levels for the 2004 estimation. 
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1.5 Economic Benefit of Pump Load Forecast 
The net economic benefits of the pump load forecasts would accrue by being able to purchase 

power contracts in advance of June 1 for usage in May and June of that same year. For the 
purposes of this study, we evaluated the benefit of power contracts purchased 1 to 2 months 
ahead, using forecasts produced by April 1 for the ramp-up date for the following spring-summer 
(usually in April, May, or June). This analysis assumes “perfect” action based on forecast 
information, meaning that appropriate actions will be taken by decision-makers following the 
forecast output. 

The net economic benefit of forecast information is calculated to be approximately $X per 
year, using the following assumptions. If decision-makers knew by April 1 that the ramp-up date 
would be at the beginning of May (or earlier) rather than toward the end of May (or later), then 
they could purchase contracts 1 or 2 months ahead (for energy usage in May and June). The 
difference between the contracts and the spot market price (i.e., if they waited to buy the power 
in May and June) is approximately $X/MWh. This calculation assumes that the 1-month and 2-
month ahead contracts are $X/MWh, and the spot market price ranges from $X/MWh to as high 
as $X/MWh, with an average of around $X/MWh. The cost of a forecast of an early May ramp 
up-date, but with actual ramp-up occurring in late May, is the same as (a), namely $X/year, as 
are the benefits and cost of a forecast of a later ramp-up date (i.e., zero, relative to existing 
information and standard operating procedures). 

1.6 Summary 
This analysis found that there is a statistical basis for predicting the controlled pump start date 

based on simultaneous precipitation and the antecedent soil moisture (figure 1-8), but that there 
is no predictive skill for springtime precipitation in that region. For this reason, there is no good 
climatological prediction of pump start date. 

Conversation with the stakeholder revealed that they were more interested in total summer load 
than actual pump start date. More success was found with this predictive skill. That is spring soil 
moisture conditions have a strong tendency to persist through the summer. There is then a strong 
(negative) correlation between summer soil moisture conditions and summer temperatures, i.e., 
wet soil tends to moderate the summer temperature extremes. Lastly, there is a strong 
relationship between summer soil moisture and temperature and total summer pump loads. As a 
result, there is reasonable predictive skills of summer pump loads based on spring soil moisture 
conditions in southeastern Idaho. 
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Figure 1-8. Observed and Estimated Values for the Pump Start Dates (Skill = 0.95). The red dots are the 95% statistical 

confidence levels for the 2004 estimation. 

Using these forecasts was estimated to be able to save PacifiCorp $X, per summer irrigation 
season.  
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2. Towards Operational Use of Probability Forecasts:  
Cross Validation and Real-time Updating 

2.1 Introduction 
Chapter 2 of the Cal ISO benchmark report of Deliverable 4 presented details of the use of 

multi-model ensemble forecasts to reduce the weather dependent component of Cal ISO load 
forecast error. Several probability forecast models were developed and evaluated on data from 
the summer of 2003. In this report, issues which arise in the real-time use of this approach are 
explored further. One day ahead (24 hour) forecasts are considered for the summers of both 2002 
and 2003.  

The significance tests in Deliverable 4 used “drop-one-out” verification to predict a given day 
in 2003 data from the entire summer of 2003 except the day (or days) that was used. This 
removes misleading results due to in-sample fitting, but is vulnerable to issues of changes in the 
NWP models from one year to the next. For example, to predict September 1, 2003, data from 
the last weeks in September would have been used. In a real-time system that data would not 
have been available, and only September data from previous Septembers would be known on 1 
September 2003. In this report, true out-of-sample forecasts for 2003 (and 2002) were 
performed. Historical data provided by Quantum Weather allows both drop-one-out testing 
within 2002 and true out-of-sample cross validation. A model constructed from observations of 
the summer of 2003 was evaluated on the summer of 2002, and vice versa. To summarize: 

1. Using the drop-one-out tests on 2002 data the model structure is shown to generalize 
well. There is no extreme degradation in skill when the tests previously performed on 
2003 data are repeated on 2002 data. This implies that the model structures chosen in the 
previous report are effective. 

2. Using true cross-validation indicates a significant bias is introduced with predicting 2003 
temperatures from a model based on 2002 data (and vice versa). The bias is sufficiently 
large as to significantly degrade the results of a blind application of the technique across 
years.  

3. A sliding window technique is demonstrated, which allows real-time true out-of-sample 
forecasting within a given season. True out-of-sample tests show that this approach 
exploits the successful model structure in a deployable, real-time method by daily 
refitting the model on the observations over the previous 90 days. 

This chapter is structured as follows. The following section provides a brief review of the 
modeling procedure. A simple example of the input values, model parameters and results for a 
single day’s forecast (1 September 2003) are given. In addition, this section includes a set of 
tables that summarize the various cross validation tests discussed in the remainder of the 
document. 

In section 3, the drop-one-out results for 2002 are discussed. This section addresses the 
question of whether the modeling approach shown to be effective in the summer of 2003 is also 
effective over the summer of 2002. This is a test of whether or not the mathematical structure 
used to model Cal ISO’s regional temperature is robust. It is demonstrated that it is robust. 
Results should be contrasted with those in Tables 2-2, 2-3, 2-4, and 2-5 of the original report, 
and demonstrate forecasts of similar quality. 

In section 4, the annual out-of-sample cross-validation procedure is stated, and the results of 
the predicting 2003 using a model constructed from 2002 are discussed (which again mirrors 
Tables 2-2, 2-3, 2-4, and 2-5 of the original report). The question here is whether a forecast 
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package trained on one summer could then be employed in another year. In this case large 
forecast biases were detected. 

In section 5 the following question is explored. Is it possible to estimate parameters which 
could exploit operationally this successful model structure in real time forecasts of regional 
temperatures and demand? To determine this, a deployable moving window approach to estimate 
the parameter is defined and evaluated for September 2003. The performance of this model is 
then contrasted with the drop-one-out results and the 2002-based model in some detail. The 
approach suggests an algorithm that provides similar skill and could be used in practice.  

To aid in distinguishing the three methods discussed below, they will consistently be referred 
to as (1) the drop-one-out method, (2) the annual out-of sample method and (3) the operational 
WIN method. 

2.2 Packages and Tables of Results 
This section demonstrates how a forecast is computed, using the NWP model output for each 

station. The table below shows all parameters and input variables required to compute the AVN-
package forecast for the Bay area on 1 September 2003. The first two columns identify the input 
variable (station and model variable), the next four columns reflect the statistics of the AVN 
package coefficients (these are discussed in the relevant sections below). Column 7 gives the 
operational coefficient available when the forecast for 1 September was made. The last two 
columns presents the forecast.  

Table 2-1: Input Parameter Values for the 1 September 2003 Forecast 
AVN Package Bay Region Regression Coefficients and One Example Forecast for September 1, 2003 

 

Station Model/Time In Sample 
Median 

In Sample 
Mean 

In Sample 
Standard 
Deviation 

In Sample 
Variational 
Coefficient 

Operational 
Coefficient 

Set for 
September 

2003 

1 September 
2003 Input 

Component 

KSFO AVN 18:00 -1.1285 -1.1375 0.3807 -0.3347 -1.1317 82.15 -92.97 
KSFO AVN 21:00 -0.1664 -0.1488 0.4476 -3.0087 -0.1555 85.23 -13.25 
KSFO AVN MOS 18:00 -1.0652 -1.0649 0.0662 -0.0622 -1.0644 65 -69.18 
KSFO AVN MOS 21:00 0.7835 0.7822 0.0702 0.0898 0.7815 72 56.27 
KOAK AVN 18:00 7.3448 7.3531 0.9505 0.1293 7.3361 89.19 654.30 
KOAK AVN 21:00 -4.3936 -4.4214 1.0603 -0.2398 -4.4035 94.66 -416.83 
KOAK AVN MOS 18:00 0.8186 0.8142 0.0814 0.1000 0.8153 65 52.99 
KOAK AVN MOS 21:00 -0.2026 -0.1970 0.0758 -0.3847 -0.1973 73 -14.40 
KCCR AVN 18:00 -6.8466 -6.8318 -0.6226 -0.0911 -6.8217 93.5 -637.83 
KCCR AVN 21:00 4.5555 4.5517 0.7069 0.1553 4.5399 100.43 455.94 
KCCR AVN MOS 18:00 0.4300 0.4285 0.0765 0.1784 0.4274 77 32.91 
KCCR AVN MOS 21:00 -0.2127 -0.2158 0.0791 -0.3668 -0.2141 86 -18.42 
KLVK AVN 18:00 2.3067 2.3093 0.3605 0.1561 2.3099 93.62 216.25 
KLVK AVN 21:00 -1.8948 -1.8952 0.3986 -0.2103 -1.8948 100.56 -190.54 
KLVK AVN MOS 18:00 0.3106 0.3130 0.0737 0.2355 0.3122 79 24.67 
KLVK AVN MOS 21:00 0.1548 0.1527 0.0888 0.5816 0.1526 91 13.89 
KSJC AVN 18:00 -1.9467 -1.9483 0.1812 -0.0930 -1.9462 86.23 -167.82 
KSJC AVN 21:00 2.9708 2.9724 0.2116 0.0712 2.9797 89.49 264.85 
KSJC AVN MOS 18:00 0.7051 0.7109 0.865 0.1217 0.7093 74 52.49 
KSJC AVN MOS 21:00 -1.1372 -1.1431 0.0890 -0.0779 -1.1420 83 -94.79 
Constant Constant -19.4824 -19.5098 1.1220 -0.0575 -19.4904   
       Forecast 90.05 
       Observed 91.5 

 

The models are constructed in the following way. For each day and for each region, the Cal 
ISO regional temperature defines the target which the model is used to forecast. The NWP values 
of the day are collected, re-weighted with a set of coefficients and combined to form the forecast. 
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How the parameters are determined depends upon which cross validation method is used. In each 
case, the historical observations are divided into a learning set and a test set. In the drop-one-out 
method, the learning set consists of all forecasts and observations from that summer (2002 when 
predicting 2002, 2003 when predicting 2003) except those days which are currently being 
forecast. The strength of this method is that dropping out the current target generates model 
parameters that are not artificially over-skillful (due to having seen the answer for which they are 
used to forecast). Nevertheless, the parameters used to forecast for 1 September depend on the 
observations from the last week in September, so while statistically valid, the method is not 
deployable operationally. 

The annual out-of-sample cross validation method uses a learning set from a different 
summer than the target set. That is, the parameters which are computed from the summer of 2002 
are frozen and then used to forecast the summer of 2003. This method is deployable, but it tests 
two separate aspects. In order to maintain high performance, the parameters estimated from one 
year must be similar to the parameters of the other year. Second, the model structure used in one 
year (the choice of variables, the selection of NWP models, etc.) must also be robust. The drop-
one-out method tests the robustness of the method, the annual out-of-sample method then tests 
how well the parameters for one year can be estimated from data in some other year. There are 
several reasons why the optimal parameters might change. These include changes in the weather 
itself, changes in the NWP models (in particular in the MOS statistics), seasonal variations in the 
best parameters, and a lack of robustness in the original estimates due to insufficient data. 

The operational sliding-window (WIN) method uses the last 90 days as the learning set to 
estimate the parameters. It will have a smaller learning set than the annual out-of-sample method, 
but this smaller learning set will be taken from a more relevant period (the recent past). Both the 
annual out-of-sample and the sliding window can be used operationally. Which method performs 
best depends on the details of the system and the model. There is no reliable rule as to which 
should be expected to forecast better. 

Tables 2a-d report the bias, the root-mean-square (RMS) error, the standard deviation of the 
error (sdev) and the ignorance score for both the drop-one-out and the annual out-of-sample 
forecasts for 2003. There is one table for each region and in each case three packages are used: 
the AVN package, the ETA package, and the PF1 Package. The second column (“Learn Set”) 
indicates which data was used as the learning set when building the package. The next three 
columns then give performance statistics for PF1, AVN and ETA packages. Taking the Bay Area 
as an example, note that the error standard deviations are similar between the two learning sets, 
the bias is much larger when the 2003 temperature forecasts are interpreted with the 2002 
packages. In the drop-one-out case (that is, using the 2003 package) the bias is about 0.01, while 
it is about –1 in the annual out-of-sample case (that is, using the 2002 package). The difference is 
most dramatic in the SDGE area and the AVN package. The bias in NBAY remains relatively 
small. In each region, the bias significantly increases the ignorance score, decreasing the 
profitability of the forecasts. 

Table 2-2a: Forecast error statistics in 2003 of the PF1, AVN, ETA packages in the Bay area 
Bay Area 2003 

 

 Learn Set PF1 AVN ETA 
2002 -1.13 0.05 0.64 Bias 2003 0.01 0.01 0.01 
2002 3.46 3.69 3.78 Stdev 2003 3.59 3.61 3.88 
2002 -1.07 -1.09 -1.00 Ignorance 2003 -1.12 -1.12 -1.01 
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Table 2-2b: Forecast error statistics in 2003 of the PF1, AVN, ETA packages in the NBay area 
Non Bay Area 2003 

 

 Learn Set PF1 AVN ETA 
2002 0.24 0.64 -0.16 

Bias 
2003 0.04 0.03 0.03 
2002 1.94 2.03 2.66 Stdev 
2003 1.58 1.70 1.77 
2002 -1.93 -1.53 -1.54 Ignorance 
2003 -2.03 -1.92 -1.86 

 

Table 2-2c: Forecast error statistics in 2003 of the PF1, AVN, ETA packages in the SCE area 
SCE Area 2003 

 

 Learn Set PF1 AVN ETA 
2002 0.18 1.31 1.08 Bias 2003 0.03 0.03 0.01 
2002 2.08 2.32 2.50 Stdev 2003 1.87 1.92 2.75 
2002 -1.57 -1.02 -0.99 Ignorance 2003 -1.75 -1.72 -1.20 

 

Table 2-2d: Forecast error statistics in 2003 of the PF1, AVN, ETA packages in the SDGE area 
SDGE Area 2003 

 

 Learn Set PF1 AVN ETA 
2002 1.66 4.57 1.86 Bias 2003 0.01 0.01 0.01 
2002 3.53 3.83 3.61 Stdev 2003 3.37 3.35 3.72 
2002 -0.61 0.35 -0.60 Ignorance 2003 -1.12 -1.13 -0.98 

 

The data presented in Tables 3a-d shows the same forecast error statistic, this time for 
forecasting the summer of 2002. 

Table 2-3a: Forecast error statistics in 2002 of the PF1, AVN, ETA packages in the Bay area 
Bay Area 2002 

 

 Learn Set PF1 AVN ETA 
2002 0.03 0.06 0.00 Bias 2003 0.15 -0.40 -0.50 
2002 3.16 3.60 3.33 Stdev 2003 3.11 3.61 3.18 
2002 -1.31 -1.12 -1.24 Ignorance 2003 -1.31 -1.09 -1.24 

 

Table 2-3b: Forecast error statistics in 2002 of the PF1, AVN, ETA packages in the NBay area 
NBay Area 2002 

 

 Learn Set PF1 AVN ETA 
2002 0.02 0.00 0.00 Bias 2003 -2.03 -3.72 0.35 
2002 1.42 1.55 1.55 Stdev 2003 3.11 3.61 3.18 
2002 -2.20 -2.07 -2.08 Ignorance 2003 -0.89 1.71 -1.83 
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Table 2-3c: Forecast error statistics in 2002 of the PF1, AVN, ETA packages in the SCE area 
SCE Area 2002 

 

 Learn Set PF1 AVN ETA 
2002 0.00 -0.03 0.01 Bias 2003 -0.54 -0.51 -1.39 
2002 1.86 1.89 1.91 Stdev 2003 1.81 1.98 1.89 
2002 -1.62 -1.60 -1.58 Ignorance 2003 -1.60 -1.48 -1.25 

 

Table 2-3d: Forecast error statistics in 2002 of the PF1, AVN, ETA packages in the SDGE area 
Bay Area 2002 

 

 Learn Set PF1 AVN ETA 
2002 0.00 0.06 0.04 Bias 2003 -4.89 -3.69 -1.16 
2002 2.62 2.77 2.79 Stdev 2003 2.85 3.23 2.87 
2002 -1.30 -1.21 -1.21 Ignorance 2003 0.35 -0.14 -1.00 

 

The origin of the bias of –4.89 for the PF1 predictor in the year 2002 trained with data on 2003 
in the SDGE region is shown in Figure 1, a time series of the forecast and target values indicates 
that the problem is in fact one of drift in the bias. This figure shows the SDGE region forecasts 
for 2003 for a package with parameters based on the summer of 2002. The forecasts track the 
verifying observations, but are systematically too low. A scatter diagram of the errors for each 
day is shown in Figure 2 which confirms this result. This is discussed further in Section 4. 
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Figure 2-1. The SDGE region forecasts for 2003 for a package with parameters based on the summer of 2002 

2.3 Drop-one-out results for the summers of 2002 and 2003 
The new drop-one-out method results above show that the modeling approach works as well in 

2002 as it was previously shown to work for the summer of 2003 as reported in Deliverable 4. 
This method forecasts one day in a summer by using all the data from that summer, except those 
day (or days) actually being predicted which are ‘dropped out’ of the learning set. For the Bay 
Area, the 2002 ignorance scores are in fact lower (better) than those of 2003 for each of the three 
packages. Similar results are found in the other three regions as well. Both the bias standard 
deviation of the errors of the 2002 drop-one-out forecasts are smaller (better) than 2003, 
indicating that to some extent 2002 was forecast more accurately than 2003. 
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2.4 Annual Out-of-sample Method 
The tables in section 2 above are designed to allow easy comparison of the differences in 

forecast quality when a given target summer is forecast using each of the two summers as the 
learning set.  

The details provided below indicate that there is a significant bias error in the cross-
predictions, possibly due to changes in the NWP models. The drop-one-out forecasts of 2002 
based on 2002 (Table 3a-d) show similar skill to the 2003-2003 drop-one-out forecasts in Table 
2. This indicates that the statistical method holds. Looking at the cross-predictions, however, 
indicates that while the standard deviation of the errors is similar, there is a large increase in the 
systematic bias.  

Table 2a of the Bay area in 2003, indicates that the bias is much larger when the learning set is 
for 2002 than when it is for 2003. Similarly in Table 3a for Bay Area in 2002, the bias using 
2003 as the learning set is larger than when using the 2002 learning set. This theme runs through 
each of the regions and all three of the packages. For each measure of forecast skill the annual 
out-of-sample result is worse, often significantly, than the drop-one-out method.  
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Figure 2-2: Scatter diagram of the two regional temperature forecasts for the SDGE region for each day in 2003 based 

on the learning set in 2003 and the learning set in 2003 

The observed bias does not appear to be due only to inter-annual changes in the NWP models 
and differences between the weather observed in one summer and the next. In addition to these 
two known effects, examining bias within a month suggests some seasonality issues exist. The 
data set is too small to convey a large degree of confidence but is indicative as shown in the 
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AVN package trained on data up to 31 August 2003 and then used to forecast the month of 
September 2003 out-of-sample. 

The day to day variations in bias and standard deviation of the forecast error in the median (not 
shown) are considered next. As expected from the small number of days used to estimate the bias 
in the first week of September, it moves about a good deal. After 10 September, however, there 
is a slow systematic move towards an increasing bias later in the season. The standard deviation 
of the error reflects a few large misses, but shows no clear systematic drift. 

There are three effective remedies for the bias-between-years issue: 

1. The introduction of a more flexible statistical modeling strategy 
2. Real-time updating of the learning set and statistical model day by day. 
3. Careful tracking of “upgrades” of the NWP models or MOS statistics. 

Given the apparent drift in the bias in September 2003 above, a sliding window approach was 
investigated. This allows the learning set to be composed from the most recent observations and 
forecasts, thereby partially accounting for both changes in the NWP model inputs and changes in 
the season of the year. In the next section, this second approach is shown to provide an effective 
way forward. 

2.5 Operational Sliding window method on September 2003 
The question presented here is the following. How can seasonal changes and changes in the 

statistical properties of the NWP inputs be accounted for? One approach is to allow the training 
set to evolve in time, keeping the most recent, ideally most relevant, data. In this section a 90 day 
learning set is used- the 90 days being those immediately before the forecast date. Thus, this 
method is deployable in real-time and the coefficients are said to be dynamic (since they change 
every day based on what happened the previous day). There are a number of model parameters 
that should be verified before the model is, in fact, used. The length of the learning set is one 
such parameter. No tuning of this type has been done on the results presented below. 

Since a 90 day learning set is required, only results for September(s) are presented. For clarity, 
only the AVN and ETA results are shown. The forecasts reflect the performance of the median. 
Kernels are not evaluated (the kernels do not change as quickly). Finally, one additional method 
is introduced for comparison. Consider the case where the learning set is fixed, containing the 90 
days immediately prior to 1 September. This model is referred to as FROZEN. The purpose of 
contrasting FROZEN and WIN is to see potential seasonal effects independently of merely 
having the same calendar year. As shown below, WIN outperforms FROZEN, suggesting that 
the seasonal effects are at play. 

First, the bias is examined between RMS and the standard deviation (sdev) of the WIN 
forecasts for each of the regions. These are shown in the Table 4a-d for September 2003. 

Table 2-4a: Bay Area Sept 2003 out-of-sample WIN 
Package bias rms sdev 

 

AVN 1.37 4.37 4.24 
ETA 2.67 4.30 3.43 

 

Table 2-4b: NBay Area Sept 2003 out-of-sample WIN 
Package bias rms sdev 

 

AVN 0.69 2.37 2.32 
ETA 0.34 2.46 2.49 
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Table 2-4c: SCE Area Sept 2003 out-of-sample WIN  
Package bias rms sdev 

 

AVN 0.02 2.21 2.25 
ETA 1.52 2.58 2.13 

 

Table 2-4d: SDGE Area Sept 2003 out-of-sample WIN  
Package bias rms sdev 

 

AVN 0.20 2.78 2.83 
ETA 0.57 3.61 3.64 

 

The September biases from WIN above show some improvement over the 2003 annual out-of-
sample forecasts shown in Table 2. They also out perform FROZEN on September (tables not 
shown). 

Figure 3 contrasts these different forecasts on a day by day basis through September 2003. The 
FROZEN predictions (in yellow) are systematically higher than the observations (dark blue). The 
dynamics window WIN forecasts (dark purple) approach those reported in Deliverable 4, which 
is the drop-one-out forecasts (in purple). 
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Figure 2-3: Forecasts of the SDGE regional temperatures for September 2003 based on the AVN package input using 

the drop-one-out method, the 2002 data, the FROZEN 2003 and the WIN method. 
The WIN forecasts are clearly superior, being identical to the FROZEN on 1 September (by 

construction) and become more similar to the drop-one-out forecasts as the end of September 
approaches. 

The procedure of this section is now repeated on the 2002 data. Table 5a-d and Figure 4 
represent the results. 

Table 2-5a: Bay Area Sept 2002 out-of-sample WIN 
Package bias rms sdev 

 

AVN -0.31 3.79 3.84 
ETA 0.14 3.64 3.70 
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Table 2-5b: NBay Area Sept 2002 out-of-sample WIN 
Package bias rms sdev 

 

AVN 0.00 1.67 1.70 
ETA 0.38 1.64 1.62 

 

Table 2-5c: SCE Area Sept 2002 out-of-sample WIN 
Package bias rms sdev 

 

AVN 0.23 2.61 2.65 
ETA 0.37 2.54 2.56 

 

Table 2-5d: SDGE Area Sept 2002 out-of-sample WIN 
Package bias rms sdev 

 

AVN -0.63 2.89 2.87 
ETA -0.65 3.66 3.67 

 

Comparing the WIN skill score set with that of FROZEN in September 2002 (not shown) 
shows much smaller differences than in September 2003, which may indicate that the coefficient 
are more stable in 2002 than in 2003.  

Figure 4 shows the September 2002 forecasts for one region (in this case NBAY) using the 
drop-one-out method, FROZEN and the dynamic WIN method for one model (this time, AVN). 
FROZEN 2003 are the predictions using the annual out-of-sample method, while FROZEN 2002 
use the 2002 data up to 31 August 2002. Frozen 2002 (magenta) is already significantly better 
than Frozen 2003 (yellow), WIN and the drop-one-out forecasts are very similar in 2002. 
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Figure 2-4: Forecasts of the Non - BAY area regional temperatures for September 2003 based on the AVN package using 
the drop-one-out method, the FROZEN 2002 and the WIN method. In this case also the forecast based on the annual out-of-

sample results (Frozen 2003) where the model coefficients are determined in 2003 and frozen are shown. Clearly, this is the 
worst of the 4 forecasts shown. 

Finally, September 2003 was considered and contrasted to the Cal ISO AVN forecast with 
those of the 90 day WIN methods. The bias and RMS error for each region is shown in Table 6. 
Although the counting statistics are small, but in the areas of large bias of RMS error (that is, 
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BAY and SDGE) the WIN approach performs well, especially in terms of reducing the bias. 
Note from Table 1 that the WIN model does not have access to the AVN forecast of TMAX as 
this product was not available from the archive. It would be interesting to see how much 
improvement its inclusion into WIN would bring.  

Table 2-6: Cal ISO and WIN forecast error statistics for all four regions and 27 days in September 2003 

Sep-03 BAY NBAY SCE SDGE 
 

 Cal_Iso WIN Cal_Iso WIN Cal_Iso WIN Cal_Iso WIN 
Bias 3.16 1.06 -0.34 0.63 0.53 -0.10 1.72 0.03 
RMSE 5.91 4.36 2.70 2.32 1.90 2.27 3.84 2.80 
Correlation 0.80 0.88 0.88 0.94 0.87 0.82 0.72 0.85 

 

Note that these results are based on September 2003 omitting the three days 20-22nd September 
which have been dropped from both the Cal ISO forecast statistics to allow it a fair comparison. 
That is, the models are compared using forecasts on the same set of days. 

The worst under-forecasts of MW are these 3 missing days. They are the largest MW under-
forecasts in that month of September 2003. Unfortunately, it is not known how the WIN 
packages would have done. Another day with a large under-forecast of more than 1000 MW is 
the 13th of September. On this day (in all 4 regions) the AVN package WIN has an error of 
smaller magnitudes that the Cal ISO AVN forecast. Furthermore, rather than under-forecasting, 
the AVN package WIN over-forecasts in three out of the four regions. 

2.6 Conclusions 
The analysis of temperature forecasts for 2003 presented in Deliverable 4 has been repeated on 

data from 2002 and extended through the examination of cross forecasts. An explicit example of 
the parameters and inputs for the Bay region on 1 September 2003 has been given. The main 
conclusions of this reanalysis of 2003 data using the new 2002 data, and the 2002 data itself, are 

1. The same modeling approach gives slightly better results for 2002, suggesting that the 
summer of 2002 may have been intrinsically easier to forecast than the summer of 2003. 

2. That cross prediction, using 2002 data as the learning set when predicting 2003 (and vice 
versa) introduces a bias into the forecasts; this bias is large enough to significantly 
degrade the operational value of the system. 

3. Using a moving window learning set consisting of the 90 days immediately prior to the 
forecast day provides a deployable approach to this difficulty. 

Future work could include obtaining sufficient data such that the entire summer would have a 
90-day data window before it, which would improve the statistical significance of the results. It 
would also be of use to determine the extent to which changes in the NPW system or output 
methods are impacting the results. Given information on the 2002 temperature and MW targets, 
the entire analysis of 2002 in terms both of temperature and of demand can be made and 
translated into likely value of the forecast to Cal ISO. While a number of questions have been 
raised within the report, it appears clear that the sliding window process provides similar 
performance to the drop-one-out methods, while avoiding non-operational aspects of the scheme. 

These results do provide a more analytical basis of estimating conditional probabilities for 
estimating Cal ISO weather-load variations, for the asymmetric avoided costs tied to estimating 
the value of weather forecast error for the Cal ISO.  This approach has shown an estimated $X 
benefit to making Cal ISO system forecasts more predictable subject to probabilistic forecast 



 
 

Economic Benefit of Incorporating Weather & Climate Forecasts into Western Energy:  Deliverable 5 2-11 

estimates.  These economic benefits will likely increase with more historical test years being 
incorporated into the forecasts. 


