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Abstract

Observations show the oceans have warmed over the past 40 years, with appreciable

regional variation and more warming at the surface than at depth. Comparing the

observations with results from two coupled ocean-atmosphere climate models (PCM and

HadCM3) that include anthropogenic forcing shows remarkable agreement between the

observed and model-estimated warming. In this comparison the models were sampled at

the same locations as gridded yearly observed data. In the top 100 m of the water column

the warming is well separated from natural variability, including both variability arising

from internal instabilities of the coupled ocean-atmosphere climate system and that arising

from volcanism and solar fluctuations. Between 125 and 200 m the agreement is not

significant, but then increases again below, and remains significant down to 600 m.

Analysis of PCM’s heat budget indicates the warming is driven by an increase in net

surface heat flux that reaches 0.7 watts m−2 by the 1990s; the downward longwave flux

increases by 3.7 watts m−2, which is not fully compensated by an increase in the upward

longwave flux of 2.2 watts m−2. Latent and net solar heat flux each decrease by about 0.6

watts m−2. The changes in the individual longwave components are distinguishable from

the pre-industrial mean by the 1920s, but due to cancellation of components, changes in

the net surface heat flux do not become well separated from zero until the 1960s. Changes

in advection can also play an important role in local ocean warming due to anthropogenic

forcing, depending on the location. The observed sampling of ocean temperature is highly

variable in space and time, but sufficient to detect the anthropogenic warming signal in all

basins, at least in the surface layers, by the 1980s.



1. Introduction

Observations show the climate is warming. Nearly a decade’s worth of rigorous

detection and attribution studies (e.g. IPCC 2001, IDAG 2005), focused mainly on

atmospheric temperature, show the warming is outside the range of natural variability.

Natural variability includes the effects of both fluctuations that arise within the coupled

ocean-atmosphere system due to oscillations or instabilities (“internal” variability), and

effects imposed on the climate from natural sources external to the oceans and

atmospheres, such as volcanism and solar fluctuations (“external” variability). The

warming’s effects can be seen qualitatively in accelerating melting of glaciers (e.g.

Thompson 2000, 2003), disruption of Arctic ecosystems (e.g. Tynan and DeMaster

(1997)), and bleaching of the world’s coral reefs (Knowlton 2001), to name a few

examples.

The ocean’s density and heat capacity are orders of magnitude greater than the

atmosphere’s; it is the thermal flywheel that stabilizes the climate system. Indeed, 84% of

observed climate warming of the Earth system (oceans, atmosphere, cryosphere,

continents) over the past 50 years has gone to heat the oceans; only 3% has gone to heat

the atmosphere (Levitus et al. 2005). The global ocean is therefore the logical place to

study the nature of observed warming.

Detection and attribution studies of ocean warming using climate models were

pioneered by Barnett et al. (2001) using the Parallel Climate Model version 1 (PCM), and

Levitus et al. (2001) using the Geophysical Fluid Dynamics Laboratory (GFDL R30)

model, who compared simulated ocean warming to the Levitus et al. (2000) observed

ocean temperature data set. Both found a good match between modeled and observed

increase in ocean heat content, but only if anthropogenic forcing was included. The

conclusion was that observed ocean warming is outside the expected range of natural

variability, and attributable to anthropogenic forcing. Subsequently the issue was

examined by Reichert et al. (2002) using the European Center/Hamburg model

(ECHAM4/OPYC3); Gent and Danabasoglu (2004) with the Community Climate System
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Model version 2 (CCSM2); and Gregory et al. (2004) with the Hadley Centre coupled

climate model version 3 (HadCM3). All found good agreement between model-predicted

and observed ocean warming, although sampling issues, somewhat weak model

variability, and the way the signal could be more easily detected in the top part of the

water column than at greater depths were generally noted. None of these studies examined

in detail the vertical structure of the warming signal. Hansen et al. (2002) and Sun and

Hansen (2003), although not formal detection and attribution studies, examined the

anthropogenically forced increase in ocean heat content in the Goddard Institute for Space

Studies atmosphere model (GISS SI2000) coupled to various ocean models (including

HYCOM), and showed globally-averaged vertical profiles of anthropogenic ocean

warming. Gregory (2000) showed zonal-mean ocean temperature increases in an

anthropogenically forced model experiment, and analyzed the role of ocean vertical heat

transport (particularly at high latitudes) in producing the surface climate response.

More recently, Barnett et al. (2005; B05 hereafter) revisited this issue with a new

version of the observed, gridded ocean temperature data set (Levitus et al. 2005).

Compared to Barnett et al. (2001), B05 also included a basin-scale analysis of the

temporal evolution of vertical penetration of heat into the oceans; an estimate the role of

time-averaged surface heat flux and advection in contributing to the temperature change;

detection with estimated historic solar and volcanic forcing taken into account; results

from a different climate model (HadCM3, Gordon et al. 2000); and a more restrictive

sampling scheme that better mimics observations (more on this below). The conclusion of

B05 was that human activities are largely responsible for the observed ocean warming

over the last 40 years. Natural variability, either internal to the coupled ocean-atmosphere

system or external (solar/volcanic), was incapable of explaining the ocean observations.

Because of their brevity, Barnett et al. (2001) and B05 did not fully address a number

of questions attending their main conclusion. Our objective is to more fully explore these

questions and determine their potential impact on the detection and attribution results for

ocean warming. Accordingly, this paper is organized as follows. In section 2 we briefly
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describe the data and models used. In section 3 we examine the models’ natural variability

and compare it to observations; a reasonably close correspondence is needed if natural

variability is to be accepted or ruled out as a potential cause of observed ocean warming.

In section 4 we illustrate a model-based “fingerprint” of ocean warming and compare it to

both observations and model estimates of natural internal and external variability. In

section 5 we illustrate how changes in net surface heat flux and advection together

determine changes in local heat storage. In section 6 we examine the effects sampling

variability has on the detection and attribution results. Finally, in section 7 we present a

summary of our findings and conclusions.

2. Model and Observational Data Used

a. Models

We use data from two O-AGCMS: the Parallel Coupled Model (PCM; Washington et

al. 2000) and HadCM3 (Gordon et al. 2000). These two models have been developed

independently for decades, so they have little in common except their purpose. Neither

uses flux adjustments. Complete descriptions of both these models and their simulations

are available in the above references, so they will only be summarized briefly here.

The atmospheric component of PCM is the CCM3 atmospheric general circulation

model (Kiehl et al. 1998), a spectral model used here at T42 resolution (equivalent to

about 280 by 280 km grid spacing), with 18 vertical layers in a hybrid sigma coordinate

scheme. A land surface model with soil moisture, vegetation types, and a simplified runoff

scheme is included. The ocean component is the Parallel Ocean Program (POP; Smith et

al. 1992, Dukowicz and Smith 1994), with a horizontal resolution of 384 by 288 points on

a displaced-pole grid (roughly 2/3◦ resolution), with 32 vertical levels clustered near the

surface to improve the representation of surface mixing processes. A

dynamic-thermodynamic sea-ice model based on Zhang and Hibler (1997) is included,

with an elastic-viscous-plastic rheology for computational efficiency (Hunke and

Dukowicz 1997). The ice model is formulated on its own grid, which has a total of 320 by
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640 grid points, with a physical grid spacing of roughly 27 km.

To determine the effect of anthropogenic forcing on climate, we used a 12 member

ensemble (listed in Fig. 6) forced with estimated historical emissions of greenhouse

gasses, ozone, and the direct effect of sulfate aerosols (Washington et al. 2000; Dai et al.

2004). These runs did not include the effects of black carbon, solar fluctuations, or

volcanoes. We compared this to a 520 year control run with greenhouse gas and sulfate

aerosol concentrations fixed at 1870 values, which provides an estimate of natural internal

climate variability. For isolating the effects of natural variability external to the coupled

ocean-atmosphere system, we used a four member ensemble driven only by estimated

solar fluctuations and volcanic forcing over the past 50 years (Meehl et al. 2003).

HadCM3 is based on the UKMO unified forecast and climate model. The atmospheric

resolution is 2.5◦ by 3.75◦, with 19 vertical levels in a hybrid vertical coordinate. It

represents effects of minor trace gases in addition to carbon dioxide, water vapor, and

ozone. The direct and some indirect effects of aerosols are included (Gordon et al. 2000).

The ocean component of HadCM3 uses a 1.25◦ by 1.25◦ horizontal resolution, with

20 vertical levels concentrated in the upper part of the water column to better resolve

surface processes. This ocean model shows considerably improved heat budgets compared

to earlier, coarser resolution versions. A simple thermodynamic sea-ice model is included,

with parameterizations of ice drift and leads. A four member ensemble was used (listed in

Fig. 7) that incorporated effects of both anthropogenic and natural external (solar,

volcanic) forcing. This differs from the PCM anthropogenically forced runs, which did

not include solar and volcanic forcing. A 700 year control run with no external or

anthropogenic forcing provided an estimate of natural internal variability. Tett et al.

(2002) and Johns et al. (2003) analyze anthropogenic runs using this model.

b. Observations

We use the latest version of the National Oceanographic Data Center’s gridded

historical ocean temperature data set (Levitus et al. 2005), available at

http://www.nodc.noaa.gov/OC5/DATA ANALYSIS/heat intro.html (accessed 17 Mar
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2005). Using this data, Levitus et al. (2005) estimated the world ocean heat content

(surface to 3000 m) increased 14.5 × 1022 J between 1955 and 1998.

The data is on a 1◦ by 1◦ grid, and has been infilled (i.e., interpolated) to fill gaps

where no observations exist. Yearly data is provided on 16 standard depth levels in the top

700 m.

Locations where the ocean is sampled vary considerably from year to year. To help

take this into account, two additional fields are supplied with the data set. The gp mask

shows, for each grid box, the number of observations taken within ∼450 km of that grid

box at the same depth. (This is a change from the gp field in Levitus et al. (2000), where a

radius of ∼900 km was used.) The dd mask shows the number of observations taken

within the grid box itself. Both masks vary in latitude, longitude, depth, and time. For

most results shown here, only locations the dd mask indicates as sampled are included, for

both models and observations. This is a departure from Barnett et al. (2001) and Reichert

et al. (2002), who used the gp mask; this change is an attempt to be more conservative, by

avoiding using any infilled data. It also motivates changing from total heat content, used

in Barnett et al. (2001), to volume averaged temperature, since the total amount of heat

depends on the volume sampled in any particular year. Gregory et al. (2004) (their Fig. 2)

illustrate how total estimated heat content can vary substantially based on assumptions

made to infill data. (Gent and Danabasoglu 2004 used volume averaged temperature as

well, but did so to normalize by varying basin sizes and avoid use of heat content units.)

In section 6a we compare the results of using dd and gp masks.

Pentads (5-year averaged data) are provided on the same horizontal grid as yearly

data, but extended to 3000 m using 28 depth levels. We focus on yearly data in this work,

since we use the dd mask to sample the model in the same way as the observations, and

potentially having a single sample represent temperature anomalies for five years becomes

uncomfortably long, even at depth. The issue of seasonal sampling of the observations,

and how it might influence the annual anomalies, is discussed in section 6d.

3. Natural Variability: Models vs. Observations
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It is important to estimate the likelihood that observed ocean warming arises from

natural climate variability, both internal and external. To do this one must compare

observed ocean warming to fluctuations expected without anthropogenic forcings. The

latter requires estimates from models; it then becomes important to examine whether the

models’ natural variability is realistically strong. We do this by comparing control model

results to the detrended observations. The detrended observations also include natural

external variability (solar and volcanic forcing) and any non-linear effects of

anthropogenic forcing, unlike model control runs. To address this, we also compare

detrended observations to detrended anthropogenically forced model runs. (The separate

effect of external forcing in the absence of anthropogenic forcing is shown for PCM in

Section 4.)

Perhaps the first and most obvious way to compare variability is simply through maps

of standard deviation of annual sea surface temperature (SST) anomalies; this is shown in

Fig. 1 for observations (1945-2004) and the long model control runs. Both the observed

and model values are detrended by removing the least squares best fit line (although there

is very little trend in the model control run surface temperatures). After detrending, solar

and volcanic variability (along with any non-linear response to anthropogenic forcing)

remains in the observations, but is absent from the model control runs. Even so, there is

some tendency for the models to overestimate SST variability. For example, PCM has too

much North Pacific variability, as the Pacific Decadal Oscillation in PCM (standard

deviation 1.1◦C) is stronger than observed (0.74◦C). HadCM3 has more North Atlantic

variability than observed. Both models have roughly the observed strength in the central

tropical Pacific (associated with ENSO), although PCM misses the high variance along

the west coast of South America and HadCM3 extends the variability too far into the

tropical Pacific warm pool.

The standard deviation of annually averaged values is useful to examine, but strong

interannual variability might mask low-frequency differences. Time series and spectra of

PCM and HadCM3 temperatures (0-700 m) from the control runs (internal variability
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alone) are already compared to detrended observations in B05, and so not repeated here.

However, it is unclear if anthropogenic forcing has any effect on the amplitude or

frequency of natural modes of internal climate variability, such as ENSO, the Pacific

Decadal Oscillation, or the North Atlantic Oscillation. Accordingly, in Fig. 2 we show

spectra of globally averaged temperature (0-700 m, dd sampled points only) in

observations and anthropogenically-forced model runs, both detrended by removing the

least squares best fit line to remove the linear part of any anthropogenic signal. (Prior to

detrending the model values have control model drift removed as described in

Appendix A; Gent and Danabasoglu 2004 illustrate and discuss drifts that can be found in

a control run, albeit for a different model than used here.)

The models and observations have similar power in interannual frequencies (> 0.15

cy yr−1), but PCM becomes deficient at longer timescales. This is less a problem with

HadCM3, which has more low-frequency variability than PCM, and matches the observed

spectrum rather well. A more complete spectral analysis is shown in Appendix B, where

the same data used to make Figure 2 is analyzed by basin and depth. The conclusion is

low-frequency spectral power in the detrended observations generally falls within the 90%

confidence limits of the PCM model ensembles, while HadCM3 tends to have too much

variability above 100 m and too little below 400 m. This would have the tendency of

making any anthropogenic warming of the surface ocean (where the signal is

concentrated) harder to detect than it should be.

Gregory et al. (2004) compared observed low frequency temperature variability to the

HadCM3 control run (natural internal variability only) by computing the standard

deviation of volume averaged, 5-yr running mean temperature at each level from the

detrended data (their Fig. 4). They found a peak in observed variability at 400 m that the

model did not reproduce. The detailed analysis of standard deviations in Appendix B

shows that the PCM control run exhibits the same behavior, but also that the observed 400

m “peak in variability” arises not because ocean variability is unusually strong at 400 m,

but because it is unusually spatially coherent. This reduces cancellation between
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uncorrelated points seen to a greater extent above and below 400 m when volume-average

temperature is calculated. The models’ average standard deviation of temperature by basin

is rather similar to the observations, as shown in Fig. 3. The black dots are observations;

the range from HadCM3’s control run is shown as the gray shaded region, while PCM’s

control run is shown as the crosshatched region. Both models have somewhat weak

internal variability in the South Atlantic below 250 m and in the Indian Ocean around 100

m. In other basins and depths the observed curve generally falls within the range of

HadCM3 ensembles, while PCM tends to show overly strong variability.

The analyses discussed so far use detrended data, yet any anthropogenic response

might be a near-linear trend over the time period. It is therefore useful to show a simple

comparison of the linear trends (1960-1999) found in the observations, control model

runs, and anthropogenic model runs. This is shown in Fig. 4 for PCM and Fig. 5 for

HadCM3; all data has been sampled with the dd mask. The results vary by model and

basin, but generally the observed 40-yr trends fall within the trends seen in the

anthropogenically forced runs, and outside the trends seen in the control run ensemble

members in the upper 100 m of the water column. This is confirmed by a K-S test of the

trends from the control and anthropogenic ensemble members (results shown on the plot).

In summary, we have performed a number of comparisons of the observed data with

the model control and anthropogenic runs to evaluate the models’ ability to reproduce

climate variability. Comparing the spectra of the detrended observations to the detrended

anthropogenically forced runs shows PCM’s level of variability is in general agreement

with observations; HadCM3 tends to have too much variability above 100 m, and too little

below 400 m. Comparing low-frequency standard deviations of temperature to the

observations shows the model control runs bracket the observed values, but lack

large-scale coherence in temperature fluctuations around 400 m in the southern

hemisphere western Pacific. However, B05 (their Fig. 2) show no detectable warming

signal at that location and depth, so the implication of this model shortcoming for the

detection issue is moot. Comparing simple linear trends in the observations to the control
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and anthropogenic model runs shows the observed trends are consistent with those found

in the anthropogenic runs, and well separated from those found in the control runs in the

upper part of the water column. None of these analyses indicate the models have

systematically weak variability in the top 100 m (where the ocean warming signal is

greatest). We conclude that the models provide a good estimate of natural internal and

external variability for detection and attribution studies.

4. Ocean Warming Fingerprint

The time series for yearly volume average temperature anomaly (0-700 m) are shown

for PCM in Fig. 6 and HadCM3 in Fig. 7. Left panels show results from the

anthropogenically forced ensemble members, right panels show same-length chunks from

the control run. Anomalies are calculated relative to the base period of 1957-1990 to

match the treatment of the observations (Levitus et al. 2005). For brevity, in the rest of

this work we will refer to the yearly, volume averaged temperature anomaly as the

“temperature”. The values in Figs. 6 and 7 are taken from sampled points only, as

indicated by the dd mask. The period shown is 1955-1999, in deference to PCM runs,

which end in 1999. (Levitus et al. (2005), their Fig. 1, shows a similar graph for observed

heat content that extends through 2003.)

Both PCM and HadCM3 show a great deal of temporal variability, which differs

significantly between ensemble members. For instance, PCM realizations B05.03 and

B06.08 show near-constant temperatures over the last 12 years of record, while B06.28,

B06.85, and B06.97 show cooling in the final years of the record. Most ensembles show

multi-year periods where temperature is cooler than a previously attained value. Such

variability can be seen in observations as well, although the decadal swing from 1970 to

1980 is larger then anything seen in the PCM ensemble members (but comparable to

swings seen in HadCM3’s abw1 and abw2). The consistent strong trends seen in the

observations and anthropogenically forced runs of both models are not found in the

control runs, which lack anthropogenic forcing (right panels of Figs. 6 and 7).

The temperature series by region for PCM are shown in Fig. 8. Individual ensemble
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members (gray lines) show a great deal of variability, both year-to-year and between

realizations. The observations (thick solid line) are consistent with individual ensemble

members in the amplitude of year-to-year variability and in the overall trend by basin.

Taking the average over ensembles (thick dashed line) removes much of the higher

frequency variability not of interest here, but still worth showing to illustrate the model

generates basin-wide variability consistent with observations. The anthropogenic forcing

increases gradually and monotonically during this time period, so for the rest of the

analysis we average by decade to reduce effects of high-frequency internal natural climate

variability.

a. Definition of Fingerprint

We desire to define a signal that concisely expresses both spatial and temporal ocean

warming found in the model runs with anthropogenic forcing. Given such a fingerprint,

we can examine how likely it is to find this pattern in the observations, unforced control

run (natural internal variability), and runs with natural external forcing (solar fluctuations

and volcanoes).

We first remove the influence of model drift by differencing temperature in the forced

ensemble runs from the simultaneous low-frequency fitted temperature in the control run

(details in Appendix A). We then define an ensemble common signal (ECS) for an

ensemble of n members as follows. For each member we concatenate, by ocean basin, the

4 decadal temperature values to form C(n, t̂). Decades are taken as 1960-1969, etc. Here t̂

can take on 24 values (4 decades × 6 basins; the x axis in Fig. 9). We do this

independently for each of the 16 standard depth levels in the top 700 m (the maximum

depth at which yearly data is given in the observed data set). To get the final ECS, we use

standard principal component analysis (PCA) to decompose C:

C(n, t̂) =
∑

m

E(n, m)P (m, t̂) (1)

where m is the mode number, E is the empirical orthogonal function, and P is the

principal component. We take the leading principal component, P (1, t̂), as the ECS.
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The ECS can be formed from any set of ensemble members, such as the PCM or

HadCM3 ensemble members alone. Here, we define our ensemble common model

fingerprint of ocean warming (or simply “fingerprint”) as the ECS of the 12 PCM

ensemble members taken together with the 4 HadCM3 ensemble members. It thus

represents the common warming signal in all the ensembles available from the two

models. The fingerprint explains 86% of the variance in the surface layers, dropping to

30% of variance at 700 m. As tests we tried both volume weighting C before PCA

analysis, and simply averaging the ensemble members to obtain the fingerprint; neither

made much difference. Equally weighting the mean of the 12 PCM ensembles and the

mean of the 4 HadCM3 ensembles to form the fingerprint changed it somewhat in the

bottom 3 levels (500-700 m), but had little effect higher in the water column, where the

signal is concentrated.

The ensemble common model fingerprint at 50 m is shown in Fig. 9 (dashed line with

squares). Also illustrated is the same quantity calculated from observations (thick line

with dots), and the 16 individual ensemble members that go into making the model

fingerprint (thin gray lines). The observed warming matches the model fingerprint quite

well. Consistent differences between oceans can be seen; for example, warming has been

greater in the North than South Atlantic.

The amplitude of the fingerprint decreases with depth as shown in Fig. 10.

Peak-to-peak values drop from 0.3 C near the surface to 0.05 C at 600 m. Again,

differences between basins are apparent; the signal drops less in the North and South

Atlantic than in the South Pacific and South Indian oceans.

The ensemble common model fingerprint is compared to the observations, and to the

models’ anthropogenically forced and control run ensemble members, in Fig. 11. The

figure is in the same format used in B05, although here the entire world ocean fingerprint

is used instead of individual basins. Briefly, “signal strength” is defined as:

S = (F · T )/||F || (2)

where F is the ensemble common model fingerprint at a given level and T is the target
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being compared to, taken at the same level. The signal strength is similar to a correlation,

but without normalization by T (equivalently, it is the correlation between F and T

multiplied by the standard deviation of T ). It retains information on both the agreement in

temporal evolution of the two signals and the strength of T . Retention of signal strength is

an important point; we would deem a model unsuccessful at reproducing the target signal

if it predicted radically too weak or strong a signal, even with a perfect correlation.

Over most of the water column there is good agreement between the observed signal

strength and the anthropogenically forced ensemble members, in both PCM and HadCM3.

Moreover, in the upper part of the water column there is a clear separation between the

observations and the natural internal variability found in the control runs (crosshatched

region). Consistent with B05, we conclude that the observed warming cannot be explained

by natural internal variability, but can be explained by anthropogenic forcing. The results

of section 3 should be kept in mind when forming this conclusion; i.e., it is important to

assess a model’s natural internal variability, and compare it to the available observations,

before the model estimate of natural internal variability can sensibly be compared to the

observed warming signal. Here we have done this comparison and found the models’

estimation of natural internal variability to be in accord with observations.

The triangles in the left panel of Fig. 11 show the signal strength for the ECS of PCM

runs forced by estimated solar and volcanic forcing alone, i.e., natural external variability

(triangles). The signal strength in these runs falls within the range of natural internal

variability, and distinctly outside the envelope of the anthropogenically forced runs. The

conclusion is that natural external variability cannot explain the observed ocean warming.

In sum, natural internal variability and solar/volcanic fluctuations are too weak to explain

the observed ocean warming signal, but the warming is consistent with that expected from

anthropogenic forcing.

The correlation between the ensemble common model fingerprint and the observations

is shown in Fig 12. The ensemble common model fingerprint explains 80-90% of the

variance of the observed signal over the top 75 m. The correlation drops to a minimum at
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depths between 125 and 150 m, possibly because of variability in the thermocline. It then

increases again below, such that the model fingerprint is significantly correlated with the

observations and explains ∼35% of the observed variance between 250 and 600 m.

Once the global fingerprint concatenated by ocean has been calculated, it can be split

apart again to perform detection individually by basin. This is illustrated in B05, and so

will not be repeated here, although we will note that adding an additional 7 PCM

anthropogenically forced realizations to the 5 used in B05 made little difference (not

shown).

5. Change in Heat Flux Components

The ocean warming in various basins is accomplished by an increase in net surface

heat flux (NSHF) due to anthropogenic forcing, the regional details of which do not

appear to have been shown before. Several previous studies have shown globally averaged

radiative forcing at various atmospheric levels (e.g. Hansen and et al. (2002), Johns et al.

(2003)), while Pierce (2004) showed global surface fluxes. Sun and Hansen (2003) have

an interesting analysis of NSHF and ocean heat storage, as well as changes in ocean heat

transport in an anthropogenically forced simulation, but do not separate out the

contribution of the various surface heat flux component fields. In this section we show the

regional anthropogenic change in surface heat flux components and oceanic heat storage

estimated by PCM. (It is not possible to show the same quantities from HadCM3 as not all

the surface heat flux components were saved.)

a. Net Surface Heat Flux

Figure 13 shows PCM’s change in surface heat flux components relative to the

1880-1919 mean (the South Pacific, which is similar to the North Pacific, is omitted). All

components have the sign convention that positive values heat the ocean, including

LW-surf, the longwave flux emitted from the surface (which is then always negative).

Globally averaged (lower right panel), the change in NSHF relative to pre-industrial

conditions reaches about 0.71 +/- 0.05 watts m−2 by the 1990s. Willis et al. (2004),
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analyzing satellite altimetric height data with observed in-situ temperature profiles,

estimated a global ocean warming rate of 0.86 +/- 0.12 watts m−2 from 1993 to 2003,

which suggests the model NSHF might be slightly low. The increase in downward

longwave (LW) flux from the atmosphere (3.7 watts m−2) is not completely compensated

for by an increase in upward LW (2.2 watts m−2) from the surface, resulting in a net LW

increase by about 1.5 watts m−2. Incoming shortwave radiation has a negative trend, due

to the effects of increasing sulfate aerosols and, possibly, changes in cloud cover. The

trend in latent heat flux is also negative, suggesting increased evaporation. The sensible

heat flux increases by about 0.6 watts m−2.

The anthropogenically-forced changes in individual heat flux components

(particularly LW) are distinguishable from the pre-industrial mean by the 1920s. However,

due to near-cancellation of the competing effects, NSHF (and thus the ocean warming)

does not become well separated from the pre-industrial mean until the 1960s. This

multi-decade lag between the effects of anthropogenic forcing on the atmosphere and on

NSHF (and hence surface temperatures) does not seem to have been noted before. It

should be noted that the anthropogenically-forced PCM runs used here do not include

solar and volcanic forcing, which might alter the times by which the runs can be

distinguished.

Individual oceans each have their own signature of how flux components evolve. For

example, in the North Indian ocean NSHF is near zero until the 1990s, due to evaporative

cooling and a strong decrease in incoming shortwave radiation (c.f. Gent and

Danabasoglu 2004, who noted the Indian ocean’s lack of monotonically increasing

warming in CCSM2 was an “interesting exception” to the other basins). There is also

considerable variability between ensemble members, as indicated by the whiskerplots. For

example, the North Indian ocean shows ensemble members with a negative NSHF change

by the 1990s. Not every region is obliged to exactly reproduce the globally-averaged

trends. This variability prevents the same calculation from being sensibly performed for

HadCM3, since the heat flux components were only saved for one ensemble member.
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b. Advection and Local Heat Storage

The rate of change of heat storage in a basin depends on NSHF and net heat advection

into the basin (cf. Gregory (2000), who examine the effects of vertical ocean heat

transport on surface temperature change in an anthropogenically forced model run). With

the anthropogenically forced PCM ensemble members it is possible to calculate local heat

storage’s rate of change and compare it to NSHF, thereby estimating the role changes in

net advection play in producing ocean warming.

Figure 14 shows time series (averaged by decade) of NSHF and changes in local heat

storage. The contribution of advection is then calculated as a residual between the other

two. Values are shown relative to the average over 1880-1919, since we are interested in

examining anthropogenically forced changes. To facilitate comparison, changes in heat

are normalized by surface area to yield an equivalent surface heat flux in watts m−2. The

entire depth of the water column is used (without any masking), so the effect of vertical

heat transfers is not included.

Advection’s role in accomplishing the anthropogenic ocean temperature change can

be minimal or important, depending on the region. For example, changes in net advective

warming play little role in North Atlantic anthropogenic warming, but significantly warm

the North Indian ocean, and cool the South Pacific. The differences between ensemble

members (not shown) can be reasonably large.

The trends are also interesting, albeit noisy. The South Pacific shows a steadily

decreasing contribution to ocean warming from advection, which partly offsets the NSHF

to result in reduced warming. The South Indian ocean, by contrast, shows increasing

warming due to advection, and so warms more than would be expected due to NSHF

alone.

The conclusion is that advection plays an important role in local ocean warming due

to anthropogenic forcing. It would be interesting to explore how the change in advective

heating is accomplished; for example, by changes in mean or eddy circulation, or by

changes in the temperature difference between water flowing into and out of the basin.
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However, this is outside the scope of the present work.

6. Sampling Variability and Model Uncertainty

The fraction of ocean volume sampled to 700 m for various oceans, as given by the dd

mask, is shown in Fig. 15. Northern hemisphere oceans (solid symbols) are noticeably

better sampled than southern hemisphere oceans (open symbols). Even in the northern

oceans, the actual locations sampled can vary wildly from year to year. In this section we

explore how sampling might potentially affect the detection and attribution results.

Gregory et al. (2004), in their analysis of the possible effects of sampling and data infill

on the observed data set, indicated that caution on this point is warranted, since estimates

of ocean heat content can vary significantly depending on how infill data is calculated.

Additionally, Sun and Hansen (2003) specifically noted that surface heat fluxes estimated

from air-sea temperature differences “do not seem to be consistent with” the large

decadal-timescale swing in ocean heat content found in the observational data set, and the

discrepancy might be due to incomplete sampling. Although we avoided using heat

content and sampled only at the same places as the observations partly for these reasons,

sampling is clearly an important issue that deserves consideration.

a. dd Versus gp Masking

We have already noted the difference between the observed data’s dd mask (sampled

points only; used here and in B05) and the gp mask (points within ∼450 km of a sample,

used by Barnett et al. 2001 and Reichert et al. (2002)). The difference using these masks

makes to the detection result (Fig. 11), by level, is shown in Fig. 16. There is little

difference between results using either mask. More detailed results with detection by

basin (not shown) give differences slightly bigger than seen in Fig. 16, but still not enough

to affect the detection and attribution results. Reichert et al. (2002) compared using the gp

mask to the full infilled data set from Levitus et al. (2001) and similarly found it made

little difference to the conclusions in a formal detection and attribution study. This does

not necessarily imply there is little difference between the sampled and infilled data itself;

18



rather, the signal detection strategy employed here (with the concatenated signal applied

to Eq. 2) is designed to maximize the signal to noise ratio as much as possible, thereby

avoiding some problems with using infill data. Further details on the impact of infilling

are given in AchutaRao et al. (2005).

b. Accuracy of Observed Estimates

We have focused on volume averaged yearly temperature anomaly in various oceans.

How accurately is this known, given the incomplete sampling?

It is straightforward to estimate this from the model. We use PCM, as there are more

ensemble members to work with than with HadCM3 (12 vs. 4). For each year’s dd

sampling mask, we compare the ensemble member’s true basin averaged temperature to

the value estimated after masking. We then average into decades so the effect of changes

in sampling over the years can be more easily seen. The 90% confidence intervals for

observational error in estimated volume averaged temperature are shown in Fig. 17, using

sampling masks from the 1960s (gray swath) and 1990s (crosshatched region). The

intervals are centered around zero; however the purpose of constructing such intervals is

to compare them to the signal. Values in Fig. 17 are therefore offset by the decade’s mean

temperature anomaly with respect to the pre-industrial control run, for the 1960s (white

squares) and 1990s (black dots).

For example, in the North Atlantic (top left panel) there has been warming of about

0.1◦C by the 1960s. However the sampling masks used in that era could have

misestimated the basin average temperature by up to +/- 0.1◦C, making detection of the

warming problematical by that time. By the 1990s the warming is greater and sampling

better, leading to a clear separation of measured temperature anomalies from zero at all

depths. Examination of the other decades (not shown) indicates the confidence intervals

for all basins except the South Atlantic separate from zero (at least in the surface levels)

starting in the 1970s; the South Atlantic then becomes separated from zero in the 1980s.

The overall conclusion is that, given the evolving sampling density and strength of the

signal, sampling is sufficient to confidently detect the anthropogenic warming signal in all
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oceans by the 1980s. Detection would be possible even earlier were a formal mechanism

for climate change detection used, such as the fingerprint technique in B05, rather than

simple decadal differences.

c. Model Heat Uptake Differences

Different climate models show different different ocean heat uptakes (Sokolov et al.

2003). How might this affect the detection and attribution results? The Climate Model

Intercomparison Project (CMIP; Meehl et al. 2000) has accumulated a database of

coupled climate runs with 1% yearly increasing CO2 forcing that can be used to examine

this question.

The ocean warming experienced after 80 years for a selection of models is shown in

Table 1. The difference between the minimum and maximum warming found by basin

(expressed here as a ratio) can be large; for example, the model with most warming

showed the North Indian ocean increasing in temperature almost 8 times more than the

model with least.

A crude estimate of the effect this model uncertainty has on the detection and

attribution results can be made as follows. If R(b) is the maximum/minimum ratio from

Table 1 for basin b, and F (t, b) is the ensemble common model warming fingerprint (a

function of decade t and basin), then we construct estimated signals for the “minimum”

and “maximum” models as follows:

Smin(t, b) = F (t, b)(1 −
R − 1

R + 1
) (3)

Smax(t, b) = F (t, b)(1 +
R − 1

R + 1
). (4)

F is at the midpoint of Smin and Smax, so the constructed signals are centered on the

ensemble common model fingerprint, and at every point Smax/Smin ≡ R. The constructed

signals for the 50 m level are shown in Fig. 18. We can then treat these constructed signals

as any other signal, using Eq. 2.

The results are shown in Fig. 19. Observations are shown as circles, the standard

ensemble common model fingerprint as squares, and the minimum/maximum constructed
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signals as the black and white triangles, respectively. The crosshatched region is the 90%

confidence interval of the unforced control run from HadCM3, used here to be

conservative as it is a wider region than found in PCM (see Fig. 16). Even with the

minimum model signal, the forced result (black triangles) falls outside the 90%

confidence interval of the unforced control in the upper part of the water column,

indicating that natural internal variability would be rejected as an explanation of the

warming. Still, the standard model fingerprint is a considerably better match to

observations than either the minimum or maximum constructed signals. If various climate

models exhibit the same difference in ocean heat uptake during the historical era as they

show in the 1% CO2 increase CMIP runs, this might allow identification of models whose

simulations agree poorly with observations. This could then be taken into account when

considering their projections of future climate change.

In summary, model uncertainty in heat uptake is significant, but not large enough to

affect the detection results presented above and in B05.

d. Seasonality of the Observed Sampling

There is no difficulty forming annually averaged temperature anomalies from the

models, since complete monthly data coverage is available. For the observations, however,

samples are made at specific times, and there is unlikely to be uniform seasonal coverage

in any particular region. To address whether this could affect our analysis, we consider

three questions. 1) Does the observed ocean temperature trend vary by season? If not,

then even strongly seasonally biased annual anomalies would have little effect on our

analysis of the low-frequency signal. 2) Is the seasonal temperature cycle sufficiently well

known to correctly compute anomalies from the value expected at the observed time? This

is a prerequisite for accurately computing the annual anomalies. 3) Is the ocean warming

fingerprint present only in the upper part of the water column affected by the seasonal

cycle? If not, then there is little reason to believe that any seasonal bias is affecting our

conclusions. These questions will be considered in turn.

1) TEMPERATURE TREND BY SEASON
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The best place to examine the seasonality of observed ocean temperature trends is at

the surface, since the amplitude of the seasonal cycle decreases with depth. This also

allows the long record of SST to be used. The linear trend in SST anomalies, by season,

over the most recent 100 years (1905-2004) computed from the Kaplan et al. (1998)

extended data set (downloaded from http://www.cdc.noaa.gov/) is shown in Fig. 20. The

seasonal trends differ in details, but there is broad agreement on the larger scales. The

pattern correlations between the various seasons range from 0.58 to 0.92, with a mean of

0.76; all are significant at the 99% level. Similar agreement is seen using the most recent

80- and 50-yr periods (not shown). The lack of large systematic differences in

low-frequency trend by season suggests that even if seasonally biased sampling were

affecting the annual anomaly, it would have minimal impact on the low-frequency signal

analyzed here.

2) REPRESENTATION OF ANNUAL CYCLE

The seasonal cycle of ocean temperatures in the World Ocean Atlas 2001 (WOA2001;

Stephens et al. 2002), an earlier version of the temperature data set used here, was

examined by Antonov et al. (2004). They found the significant increase in data in

WOA2001 compared to an even earlier (1994) version of the data set made little

difference to the depicted seasonal cycle. The implication is that there is sufficient data in

WOA2001 to accurately model the seasonal cycle. In fact, they show that 99% of seasonal

changes in ocean heat content, in both hemispheres, arise from the annual harmonic alone

(their Table 1). Evidently, fine temporal sampling is not required to form an accurate

annual cycle on basin scales. The annually averaged version of the data set we use here is

based on even more data than used in WOA2001 (Levitus et al. 2005). It therefore would

be expected to have an even more accurate depiction of the annual cycle, which would

allow annual anomalies to be correctly computed even from irregularly sampled data.

3) DETECTION WITH DEPTH

If seasonally biased observations were somehow mimicking the models’

anthropogenic warming fingerprint, the correlation between the ensemble common model
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fingerprint and the observed signal would become insignificant at depths little influenced

by the annual cycle. Figure 12 shows this is not the case. The correlation of the model

anthropogenic warming fingerprint with the observations is statistically significant, and

nearly uniform, from 250 to 600 m. At such depths, temperatures are little influenced by

the seasonal cycle (Gleckler et al. 2005). The fact that the signal is detectable at depth is a

strong indication that it does not arise from seasonal biases in the observations.

In summary, multidecadal trends in SST do not exhibit large differences by season;

previous work suggests that the data set used here has a good representation of the

seasonal cycle; and the model anthropogenic warming fingerprint is significantly

correlated with the observations at depths little influenced by the seasonal cycle (250-600

m). We therefore conclude that the results shown here are not influenced by possible

seasonal sampling biases in the observations.

7. Conclusions

The purpose of this work has been to explore a number of issues related to detection

and attribution of ocean warming, including an evaluation of natural climate variability

(internal and external) in the coupled climate models, the possible influence of sampling

on the results, an estimate of the strength of model heat uptake uncertainty (compared to

signal strength), the role of the surface heat flux components and advection in

accomplishing the ocean warming, and the possible effects of seasonally biased

observations. We used two independent coupled climate models, PCM and HadCM3

(neither of which uses flux correction) and compared them to the Levitus et al. (2005)

yearly observed, gridded ocean temperature data set (0-700 m). With few exceptions, we

sampled the models in accordance with the observation’s dd sampling mask, which shows

when and where an individual 1◦× 1◦ grid box contains an observation. Our main

conclusions are as follows.

• PCM and HadCM3 show natural variability (internal and external) at levels similar

to observed at time scales shorter than 0.15 cy yr−1, except for having overly weak

variability in basin-averaged temperatures between 300 and 500 m. This latter is not due
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to weak variability at a given point, but rather because observations show more coherence

in variability at this depth (resulting in lack of cancellation when the basin-average

temperature is computed) than the models. This increase in coherent variability at depth in

the observations is not a global phenomena, but rather localized to the southern

hemisphere western tropical Pacific. Overall, the models provide a good measure of

natural climate variability for anthropogenic detection studies.

• The ensemble common model fingerprint of ocean warming due to anthropogenic

forcing agrees well with observed ocean warming in the top 100 m of the water column,

explaining about 80-90% of the observed variance (globally and decade averaged). The

warming is outside the envelope expected from natural variability, both internal and

external (solar and volcanic fluctuations) to the climate system. Between 250 m and 600

m the correlation is weaker but still statistically significant. The conclusion that the

warming is outside the range expected from natural variability depends on the estimate of

natural variability employed. Both models’ estimates of natural variability are consistent

with the available observations. Since the observed ocean warming is outside this range of

natural variability, we conclude the ocean is warming due to anthropogenic causes.

• The increase in ocean heat content in PCM is driven by an 0.7 watts m−2 increase in

net surface heat flux over the world oceans since 1960. Downward longwave radiation

increases by 3.7 watts m−2, which is not completely compensated by an increase in

upward longwave radiation of 2.2 watts m−2. Net incoming shortwave and latent heat

have negative trends. The anthropogenically forced changes in the longwave components

become distinguishable from pre-industrial values by the 1920s, but near cancellation of

terms prevents the net heat flux from becoming well separated from the pre-industrial

mean until the 1960s, a gap of some decades.

• In PCM (where data is available), changes in advection play an important part in the

modeled anthropogenic change in ocean temperature in certain regions. For example, in

the South Indian ocean advection increases the overall warming, while it decreases the

warming in the South Pacific.
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• Model estimates suggest the observed sampling is sufficient to estimate

basin-averaged temperatures to about +/- 0.1 ◦C. This is highly dependent on the basin

and depth, however. Comparing this uncertainty to the model-projected strength of

anthropogenic ocean warming, the historical coverage is sufficient to reliably detect ocean

warming in all oceans.

• CMIP2 results suggest ocean basin heat uptake in various climate models can vary

by a wide margin (a factor of 2 to almost 8, depending on the region). Synthetically

constructed ocean warming fingerprints corresponding to the “maximum” and

“minimum” heat uptake ocean models suggests that even in the case of minimum heat

uptake, the anthropogenically forced model signal falls outside the expected range of

natural internal climate variability in the surface layers.

• Analysis of ocean temperature trends by season, representation of the seasonal

cycle, and detectability with depth indicate our results are unaffected by possible seasonal

sampling biases in the observations.

Our conclusion that observed ocean warming arises from anthropogenic sources

agrees with earlier authors such as Barnett et al. (2001), Levitus et al. (2001), Reichert et

al. (2002), Gent and Danabasoglu (2004), and Gregory et al. (2004). The additional

information presented here and in Barnett et al. (2005) on the vertical structure of the

signal explains why it is more detectable in the upper part of the water column, as noted in

Gent and Danabasoglu (2004). Additionally, illustrating the evolution of net surface heat

flux and the role advection plays sheds more light on the processes driving the ocean

warming signal. The analysis of detectability and sampling issues as a function of depth

shows the limitations of the historical observations and imply how they might be usefully

extended in the future. Lastly, it should be noted that the two models used here, although

producing good climate simulations overall, likely do not sample the full spread of model

differences found in global climate models in use today; a fuller analysis that takes more

model results into account would be worthwhile. As models with higher resolution or

improved physical parameterizations become available, the kind of analysis shown here

25



could reveal ever more detailed information about how anthropogenic forcing is likely to

affect our planet.
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9. Appendix A: Removing Model Drift

Our objective is to remove the model drift from the detection results. In Barnett et al.

(2001), we fit a second-order trend to the control run and took the difference between the

anthropogenically forced ensembles and fitted trend as the signal. The difference between

the unforced control run and the fitted trend was used as the noise estimate. This gets

more difficult when using the “dd” sampling mask, since the sampling mask itself changes

significantly from year to year.

Let:

s(x, t) be the sampling mask (1 if grid box was sampled, 0 otherwise)

c(x, t) be the unforced control run model data

e(x, t, n) be the anthropogenically forced ensemble run model data

v(x) be the volume of the grid box

where x is the location, t is the year (1955-1999), and n is the ensemble number.

Then, the volume averaged temperature for the control run (T c) and an ensemble

member (T e) are time series defined as:

T c(t) =

∑

x

c · s · v

∑

x

s · v
(5)

and

T e(t, n) =

∑

x

e(n) · s · v

∑

x

s · v
(6)

If no low-frequency fitting to the control run were desired, the signal for any

particular ensemble member n could be defined as T e(t, n) − T c(t). The problem with

this comes when estimating the noise. If a procedure analogous to that used in Barnett et

al. (2001) were employed, the noise would be: T c(t) − T c(t) ≡ 0. So that is not useful.

We instead define γ, the time series of the control run sampled with one fixed mask,
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where the fixed mask is taken at year τ :

γ(t, τ) =

∑

x

c(x, t) · s(x, τ) · v

∑

x

s(x, τ) · v
(7)

The advantage of this is ∂γ/∂t depends only on the way c(x, t) depends on t. By

contrast, dT c(t)/dt depends on the way both c(x, t) and s(x, t) depend on t. This is not

helpful, since changes in s with time are completely non-physical; they might be driven by

budgets for observing programs, for example. We want to get at the way c(x, t) changes in

time, as it is the model drift to be eliminated.

Since the time dependence of γ only depends on a quantity with a physically sensible

time variation (c(x, t)) we can reasonably fit a second order trend to it over time (t) to

produce γ∗(t, τ).

Now consider only the diagonal elements of the γ∗ array:

Γ∗(t, τ) =











γ∗(t, τ) if t = τ

0 otherwise
(8)

The two time indices (t and τ ) are then redundant, so we drop the τ and refer to this simply

as Γ∗(t). Γ∗ represents the second order trend fitted volume-averaged temperature (i.e.,

retaining only model drift) seen at time t, using the correct sampling mask for that time.

We then estimate the signal for an ensemble as:

T e(t, n) − Γ∗(t) (9)

and the noise as:

T c(t) − Γ∗(t) (10)

This estimates the signal as the difference between what is seen at each year and what

would be expected to be seen if only model drift were acting at that same year, using the

correct sampling mask for the year in question.

A subtle point is that the final quantity re-introduces the temporal dependence on the

sampling mask. I.e., d/dt(T c(t) − Γ∗(t)) depends on ds/dt again (since Γ∗(t) depends on
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s(t)). The trend fitting removes the effect of model drift, not the effect of sampling mask

changes. Another point worth noting is that after this procedure, the temperatures are

anomalies with respect to the control run, which represents pre-industrial conditions. We

must then compute the anomalies with respect to the observed era (1957-1990) to match

the treatment of the observations (Levitus et al. 2005).

10. Appendix B: Variability in Models and Observations

1) SPECTRA BY BASIN

Figure 2 shows temperatures globally averaged over all depths, but our primary

interest is how ocean warming varies regionally (in the North and South Atlantic, Indian,

and Pacific oceans) and with depth (cf. Lysne and Deser 2002 for a regional model-data

comparison of variability in the Pacific). The data used to generate the global,

depth-averaged spectrum in Fig. 2 is broken apart by basin and depth in Fig. 21 for the

observations, Fig. 22 for PCM, and Fig. 23 for HadCM3. Only frequencies less than 0.2

cy/yr are shown since we are interested in examining the slow ocean warming over

decades (in Section 4 temperatures are averaged by decade before forming the ocean

warming fingerprint). The low-frequency power at depth should be considered uncertain

due to poor sampling in early decades.

Places where observed values fall outside the model ensemble range are shown in the

panels marked “outside” in Figs. 22 and 23. Solid circles indicate the observed power falls

above the 90% confidence limit of the ensembles; hollow circles indicate where it falls

below. A circle (hollow or solid) will be seen by chance 10% of the time; the actual

percentage of locations with circles is noted in the plot title for each basin. For the

purposes of detecting anthropogenic ocean warming, solid circles indicate the model is

deficient in variability, which could lead to a false detection of anthropogenic influences

on the oceans; hollow circles indicate the model has too much variability, which could

lead to the false rejection of anthropogenic forcing as the cause of ocean warming.

The spectral power density seen in PCM is close to the values seen in observations in
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all basins except the North Atlantic, where PCM tends to exhibit too much variability

below 75 m. In all other basins the fraction of observed values falling outside the model

ensemble range is near that expected from chance. In HadCM3, there is a tendency to

have weak variability at depth, and overly strong variability in the surface layers,

especially in the South Atlantic, South Pacific, and North Indian basins.

2) ANALYSIS OF STANDARD DEVIATION

Gregory et al. (2004) compared observed low frequency temperature variability to the

HadCM3 control run (natural internal variability only) by computing the standard

deviation of volume averaged, 5-yr running mean temperature at each level from the

detrended data (their Fig. 4). We will refer to this quantity as “SD(Avg(T))”; it is shown

for observed temperatures (detrended by removing the best fit line) as the broken line with

triangles in Fig. 24. There is a peak in observed variability at 400 m, which neither model

control run reproduced (Fig. 25, right panel).

The subsurface peak in observed SD(Avg(T)) gives the impression that were a ship to

occupy a station, there would be greater temperature variability measured at 400 m then

above or below. This is not true, as can be seen in the global average of individual

standard deviations at each point, “Avg(SD(T))”. Generally SD(Avg(T)) � Avg(SD(T))

because significant cancellation occurs when the volume average temperature is taken.

How much cancellation depends on the spatial coherence of temperature fluctuations, so

an indication of coherence can be seen by comparing SD(Avg(T)) to Avg(SD(T)).

Figure 24 shows both quantities. The two curves have been normalized by their

maximum values so they can be easily compared. They differ at the surface, where there is

less cancellation (i.e., more spatial coherence) in ocean temperature than below.

Presumably this is due to the atmosphere’s imposition of its typical length scales on the

surface ocean. More importantly, Avg(SD(T)) shows no peak in variability at 400 m. This

implies that the observed 400 m “peak in variability” arises not because ocean variability

is unusually strong at 400 m, but because it is unusually spatially coherent. This reduces

cancellation between uncorrelated points seen to a greater extent above and below 400 m
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when volume-average temperature is calculated.

Figure 25 compares observations to the control model runs for both methods of

calculating variability. Data have been detrended as described in section 3. The left panel

shows Avg(SD(T)); by this measure the HadCM3 control run is generally consistent with

observations, while the PCM control run has somewhat too strong internal variability

between 20 and 600 m. The right panel shows SD(Avg(T)); as in Gregory et al. (2004),

the main discrepancy is that both models miss the observed maximum at 400 m.

Comparing the panels shows the models’ failure to reproduce the peak in SD(Avg(T)) at

400 m happens mainly because they have less spatial coherence at that depth, not because

variability at individual points is too weak. Further analysis (not shown) indicates the

observed spatial coherence driving the peak at 400 m is not a global phenomena, but

rather is confined roughly to the northwest half of a box from 105◦E to 130◦W, and 4◦S to

42 ◦S. As a general characterization, Fig. 25 shows that the model control runs bracket the

observed pointwise variability at all depths, but have less spatial coherence than observed

(but still realistic pointwise variability) around 400 m.
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Figure Captions

Figure 1. Standard deviation (C) of detrended annually averaged sea surface

temperature anomalies. Top: Observed, 1945-2004. Middle: PCM control run (520

years). Bottom: HadCM3 control run (700 years). Contour interval is 0.2 C; values

greater than 0.6 C are shaded. Model results are from the control run with no

anthropogenic, solar, or volcanic variability.

Figure 2. Spectra of yearly volume averaged temperature anomaly, 0-700 m, at dd

sampled points only, 1955-1999. Thick line: Observed. Grey shading: envelope from four

HadCM3 anthropogenically forced runs. Stippled: envelope from 12 PCM

anthropogenically forced runs. All series are detrended by removing the best-fit line

before computing the spectrum. The cross in the upper right shows the 90% confidence

interval and bandwidth centered on 0.3 cy yr−1 for the observations.

Figure 3. Basin-averaged standard deviation of temperature by depth (at dd sampled

points only), from yearly values averaged into non-overlapping 5-year pentads and

detrended by removing the best fit line. Dots: observed. Shaded: range in HadCM3

control run. Crosshatched: range in PCM control run.

Figure 4. Histograms of the linear trend (C/decade) in volume average temperature

from the PCM control runs (black) and anthropogenically forced ensemble members

(gray), compared to the observations (’X’). Using a K-S test, ’***’ indicates the

probability the gray and black values are drawn from the same underlying distribution is

less than 0.01; ’**’, less than 0.05; ’*’, less than 0.10.

Figure 5. As in Fig. 4, but for HadCM3.

Figure 6. Time series of yearly global volume average temperature anomaly (0-700

m), at dd sampled points only. Left panel: from observations (bottom, thick line) and 12

PCM ensemble members with anthropogenic forcing estimated over the historical period.

Right panel: from the PCM control run with natural internal climate variability alone.

Curves are offset by 0.12 C; ensemble member case IDs are given along the right edge.

Figure 7. Same as Fig. 6, but for HadCM3.
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Figure 8. Time series of yearly volume averaged temperature by ocean, 0-700 m, at dd

sampled points only. Thick solid line: observed. Thick dashed line: PCM ensemble

average. Thin lines: individual PCM ensemble members.

Figure 9. The ocean-decade concatenated “fingerprint” of ocean warming at 50 m

depth. Dashed heavy line with squares: ensemble common model fingerprint generated

using both PCM and HadCM3. Solid heavy line with dots: observed. Thin lines:

individual model ensemble members. The X axis is concatenated decade by ocean; the Y

axis is volume averaged temperature (at dd mask sampled points).

Figure 10. Ensemble common model fingerprint of ocean warming, by depth,

computed from the 12 PCM and 4 HadCM3 anthropogenically forced ensemble members

taken together. The x axis is concatenated decadal values by basin; the first x point

therefore reflects the volume averaged temperature anomaly in the North Atlantic (basin

labels are across the top) in the 1960s, the second x point the 1970s, etc. The highly

characteristic sawtooth shape of the fingerprint in the surface layers indicates all basins

experienced distinct warming from the 1960s to the 1990s. Curves are offset by 0.1 C.

Only data at dd mask sampled points are included.

Figure 11. Strength of the ensemble common model fingerprint of ocean warming

found in the observations (circles), anthropogenically forced model runs (90% confidence

interval shown by shaded region), and control run with internal natural variability only

(90% confidence interval around zero shown by crosshatched region). Left: for PCM.

Right: for HadCM3. PCM also had a separate run with only solar and volcanic forcing;

the strength of the fingerprint found in the ensemble common signal of these runs is shown

by the triangles in the left panel. Only data at dd mask sampled points was included.

Figure 12. Correlation between the ensemble common model fingerprint of ocean

warming and the observations. Values outside the shaded region are statistically

significant at the 95% level. Only data at dd mask sampled points was included.

Figure 13. Components of the surface heat flux, by ocean (and world: lower right)

from the PCM anthropogenically forced runs. Values are anomalies relative to the first 40
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years, averaged by decade. For all components, positive values act to warm the surface.

The whiskerplots show the mean, interquartile range, and minimum/maximum of the

ensembles.

Figure 14. Time series of net surface heat flux (NSHF), changes in local heat storage,

and heating due to advection from the PCM anthropogenically forced ensembles. Values

are decadal averages relative to the 1880-1919 average.

Figure 15. Fraction of ocean volume sampled to 700 m, based on the 1◦×1◦ yearly dd

mask from Levitus et al. (2005).

Figure 16. Strength of ensemble common model warming fingerprint (C) in the

observations (circles), unforced control runs (90% confidence interval around zero shown

by crosshatching), and anthropogenically forced ensemble members (shaded region). Left

column: using dd mask (sampled points only), for PCM (top) and HadCM3 (bottom).

Right column: using gp mask (points within 450 km of samples included), for PCM (top)

and HadCM3 (bottom).

Figure 17. Uncertainty in observed volume averaged temperature by basin, estimated

using PCM. Grey shaded region: 90% confidence interval of the error, using dd sampling

locations of the 1960s. Crosshatched region: using dd sampling locations of the 1990s. So

the uncertainty can be compared to the signal, values are offset by the anthropogenically

forced warming seen in the 1960s (white squares) and 1990s (black dots) relative to the

pre-industrial era.

Figure 18. Thick line with squares: ensemble common model ocean warming

fingerprint. Dashed line with triangles: the constructed “minimum” model signal, based

on models with the minimal ocean heat uptake (by basin) in the CMIP2 data set. Thin line

with circles: the constructed “maximum” model signal. Only data at dd mask sampled

points was included. See text for details.

Figure 19. Strength of global ocean warming signal as a function of depth. Squares:

ensemble common model fingerprint. Circles: observations. Black triangles: for the

constructed “minimum” heat uptake model. White triangles: for the “maximum” heat
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uptake model. Crosshatched region: 90% confidence interval for HadCM3 unforced

control model run. Only data at dd mask sampled points was included.

Figure 20. Linear trend in SST anomalies (C/century) over the period 1905-2004, by

season. Values greater than 0.25 C/century are shaded. Contour interval is 0.25 C. Data

have been spatially filtered with a boxcar of width 3000 km.

Figure 21. As in Fig. 2, but shown as a function of basin and depth for observations

only. Plotted are the the logs of the spectral power density; values > −4 are shaded.

Contour interval is 0.5.

Figure 22. As in Fig. 21, but for PCM. The panels marked “outside” indicate locations

where the observed spectral power (Fig. 21) falls outside the 90% confidence interval of

the PCM ensembles’ spectra; solid circles indicate where the observed spectral density

exceeds the model range, and hollow circles indicate where the observed spectral density

is smaller than the minimum model value. See text for details.

Figure 23. As in Fig. 22, but for HadCM3.

Figure 24. Standard deviation of detrended 5-yr running mean globally averaged

temperature as a function of depth (at dd sampled points only). Both curves are from

observations, but differ in the way they were computed. Black triangles: standard

deviation of globally averaged temperature. White squares: global average of the standard

deviation of temperature at each point. Curves are normalized by their maximum value.

Figure 25. Standard deviation of detrended (removal of best fit line) 5-yr running

mean globally averaged temperature as a function of depth, comparing observations (black

dots), HadCM3 control run (gray shaded region shows the ensemble range), and PCM

control run (crosshatched region shows ensemble range). Left: computed as the global

average of the standard deviation of temperature at each point. Right: computed as the

standard deviation of globally averaged temperature. All data is at dd sampled points only.
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Table Captions

Table 1. Volume averaged increase in temperature (C) by ocean, for various climate

models, after 80 years of 1% per year increase in atmospheric CO2 concentration. See

AchutaRao et al. (2005) for details.
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Figure 1: Standard deviation (C) of detrended annually averaged sea surface temperature

anomalies. Top: Observed, 1945-2004. Middle: PCM control run (520 years). Bottom:

HadCM3 control run (700 years). Contour interval is 0.2 C; values greater than 0.6 C are

shaded. Model results are from the control run with no anthropogenic, solar, or volcanic

variability.
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Figure 2: Spectra of yearly volume averaged temperature anomaly, 0-700 m, at dd sampled

points only, 1955-1999. Thick line: Observed. Grey shading: envelope from four HadCM3

anthropogenically forced runs. Stippled: envelope from 12 PCM anthropogenically forced

runs. All series are detrended by removing the best-fit line before computing the spectrum.

The cross in the upper right shows the 90% confidence interval and bandwidth centered on

0.3 cy yr−1 for the observations.
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Figure 3: Basin-averaged standard deviation of temperature by depth (at dd sampled points

only), from yearly values averaged into non-overlapping 5-year pentads and detrended

by removing the best fit line. Dots: observed. Shaded: range in HadCM3 control run.

Crosshatched: range in PCM control run.
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Figure 4: Histograms of the linear trend (C/decade) in volume average temperature from the

PCM control runs (black) and anthropogenically forced ensemble members (gray), com-

pared to the observations (’X’). Using a K-S test, ’***’ indicates the probability the gray

and black values are drawn from the same underlying distribution is less than 0.01; ’**’,

less than 0.05; ’*’, less than 0.10.
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Figure 5: As in Fig. 4, but for HadCM3.
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Figure 6: Time series of yearly global volume average temperature anomaly (0-700 m), at

dd sampled points only. Left panel: from observations (bottom, thick line) and 12 PCM

ensemble members with anthropogenic forcing estimated over the historical period. Right

panel: from the PCM control run with natural internal climate variability alone. Curves are

offset by 0.12 C; ensemble member case IDs are given along the right edge.
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Figure 7: Same as Fig. 6, but for HadCM3.
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Figure 8: Time series of yearly volume averaged temperature by ocean, 0-700 m, at dd sam-

pled points only. Thick solid line: observed. Thick dashed line: PCM ensemble average.

Thin lines: individual PCM ensemble members.
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Figure 9: The ocean-decade concatenated “fingerprint” of ocean warming at 50 m depth.

Dashed heavy line with squares: ensemble common model fingerprint generated using both

PCM and HadCM3. Solid heavy line with dots: observed. Thin lines: individual model

ensemble members. The X axis is concatenated decade by ocean; the Y axis is volume

averaged temperature (at dd mask sampled points).
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Figure 10: Ensemble common model fingerprint of ocean warming, by depth, computed

from the 12 PCM and 4 HadCM3 anthropogenically forced ensemble members taken to-

gether. The x axis is concatenated decadal values by basin; the first x point therefore

reflects the volume averaged temperature anomaly in the North Atlantic (basin labels are

across the top) in the 1960s, the second x point the 1970s, etc. The highly characteristic

sawtooth shape of the fingerprint in the surface layers indicates all basins experienced dis-

tinct warming from the 1960s to the 1990s. Curves are offset by 0.1 C. Only data at dd

mask sampled points are included.
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Figure 11: Strength of the ensemble common model fingerprint of ocean warming found

in the observations (circles), anthropogenically forced model runs (90% confidence inter-

val shown by shaded region), and control run with internal natural variability only (90%

confidence interval around zero shown by crosshatched region). Left: for PCM. Right: for

HadCM3. PCM also had a separate run with only solar and volcanic forcing; the strength of

the fingerprint found in the ensemble common signal of these runs is shown by the triangles

in the left panel. Only data at dd mask sampled points was included.
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Figure 12: Correlation between the ensemble common model fingerprint of ocean warming

and the observations. Values outside the shaded region are statistically significant at the

95% level. Only data at dd mask sampled points was included.
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Figure 13: Components of the surface heat flux, by ocean (and world: lower right) from

the PCM anthropogenically forced runs. Values are anomalies relative to the first 40 years,

averaged by decade. For all components, positive values act to warm the surface. The

whiskerplots show the mean, interquartile range, and minimum/maximum of the ensem-

bles.
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Figure 14: Time series of net surface heat flux (NSHF), changes in local heat storage, and

heating due to advection from the PCM anthropogenically forced ensembles. Values are

decadal averages relative to the 1880-1919 average.
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Figure 15: Fraction of ocean volume sampled to 700 m, based on the 1◦×1◦ yearly dd mask

from Levitus et al. (2005).
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Figure 16: Strength of ensemble common model warming fingerprint (C) in the obser-

vations (circles), unforced control runs (90% confidence interval around zero shown by

crosshatching), and anthropogenically forced ensemble members (shaded region). Left col-

umn: using dd mask (sampled points only), for PCM (top) and HadCM3 (bottom). Right

column: using gp mask (points within 450 km of samples included), for PCM (top) and

HadCM3 (bottom).
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Figure 17: Uncertainty in observed volume averaged temperature by basin, estimated us-

ing PCM. Grey shaded region: 90% confidence interval of the error, using dd sampling

locations of the 1960s. Crosshatched region: using dd sampling locations of the 1990s. So

the uncertainty can be compared to the signal, values are offset by the anthropogenically

forced warming seen in the 1960s (white squares) and 1990s (black dots) relative to the

pre-industrial era.
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Figure 18: Thick line with squares: ensemble common model ocean warming fingerprint.

Dashed line with triangles: the constructed “minimum” model signal, based on models with

the minimal ocean heat uptake (by basin) in the CMIP2 data set. Thin line with circles: the

constructed “maximum” model signal. Only data at dd mask sampled points was included.

See text for details.
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Figure 19: Strength of global ocean warming signal as a function of depth. Squares: ensem-

ble common model fingerprint. Circles: observations. Black triangles: for the constructed

“minimum” heat uptake model. White triangles: for the “maximum” heat uptake model.

Crosshatched region: 90% confidence interval for HadCM3 unforced control model run.

Only data at dd mask sampled points was included.
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Figure 20: Linear trend in SST anomalies (C/century) over the period 1905-2004, by sea-

son. Values greater than 0.25 C/century are shaded. Contour interval is 0.25 C. Data have

been spatially filtered with a boxcar of width 3000 km.
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Figure 21: As in Fig. 2, but shown as a function of basin and depth for observations only.

Plotted are the the logs of the spectral power density; values > −4 are shaded. Contour

interval is 0.5.
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Figure 22: As in Fig. 21, but for PCM. The panels marked “outside” indicate locations

where the observed spectral power (Fig. 21) falls outside the 90% confidence interval of

the PCM ensembles’ spectra; solid circles indicate where the observed spectral density

exceeds the model range, and hollow circles indicate where the observed spectral density

is smaller than the minimum model value. See text for details.
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Figure 23: As in Fig. 22, but for HadCM3.



Standard deviation (normalized)
0.0 0.2 0.4 0.6 0.8 1.0

0

20

50

100

150

250

400

600

D
ep

th
 (

m
)

SD( Avg(T) )
Avg( SD(T) )

/data/obs/levitus/data_2004/yearly/temp/sd_of_avg_t_vs_avg_of_sd_t_world.R Wed May 11 11:25:49 2005

Figure 24: Standard deviation of detrended 5-yr running mean globally averaged tempera-

ture as a function of depth (at dd sampled points only). Both curves are from observations,

but differ in the way they were computed. Black triangles: standard deviation of globally

averaged temperature. White squares: global average of the standard deviation of temper-

ature at each point. Curves are normalized by their maximum value.
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Figure 25: Standard deviation of detrended (removal of best fit line) 5-yr running mean

globally averaged temperature as a function of depth, comparing observations (black dots),

HadCM3 control run (gray shaded region shows the ensemble range), and PCM control run

(crosshatched region shows ensemble range). Left: computed as the global average of the

standard deviation of temperature at each point. Right: computed as the standard deviation

of globally averaged temperature. All data is at dd sampled points only.



Model N Atl S Atl N Pac S Pac N Ind S Ind

csiro-c97a 0.531 0.377 0.339 0.270 0.521 0.316

bcm-c01a 0.322 0.252 0.114 0.067 0.066 0.100

hadcm3-c97a 0.498 0.183 0.215 0.224 0.215 0.218

mri-c02a 0.365 0.253 0.239 0.199 0.422 0.241

pcm-c99a 0.277 0.163 0.133 0.129 0.121 0.123

cccma-c01a 0.505 0.436 0.294 0.296 0.274 0.315

gfdl-c96a 0.506 0.319 0.280 0.232 0.319 0.200

md-c99a 0.427 0.227 0.192 0.161 0.199 0.156

Maximum 0.531 0.436 0.339 0.296 0.521 0.316

Minimum 0.277 0.163 0.114 0.067 0.066 0.100

Max/Min 1.919 2.675 2.989 4.449 7.926 3.163

Table 1: Volume averaged increase in temperature (C) by ocean, for various climate models,

after 80 years of 1% per year increase in atmospheric CO2 concentration. See AchutaRao

et al. (2005) for details.


