
ncdf Read, write, and create netCDF files (v1.5)

Description

Read from or write to existing netCDF format files, or create new ones.

Details

The netCDF data file format from Unidata is a platform-independent, binary file that also
contains metadata describing the contents and format of the data in the file. NetCDF
files contain one or more variables, which are structured as regular N-dimensional arrays.
They also contain dimensions, which describe the extent of the variables’ arrays. Data can
be read from or written to variables in arbitrary hyperslabs. The R package ’ncdf’ allows
reading from, writing to, and creation of netCDF files. Note that the netCDF library must
already be installed on your machine for this R interface to the library to work.

If you are absolutely new to netCDF files, they can be a little overwhelming, so here is a
brief sketch of what documentation you need to read next.

If you want to READ data from an already-existing netCDF file, first call open.ncdf to
open the file, then call get.var.ncdf to read the data from the file.

If you want to WRITE data to a new netCDF file, first call dim.def.ncdf to define the
dimensions that your data exists along (for example, perhaps latitude and longitude), then
call var.def.ncdf to define a variable in the netCDF file that will hold your data, then
call create.ncdf to create the netCDF file, then call put.var.ncdf to write your data to
the newly created netCDF file.

This is version 1.5 of the ncdf library.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

att.put.ncdf, att.get.ncdf, close.ncdf, create.ncdf, dim.def.ncdf, get.var.ncdf,
put.var.ncdf, open.ncdf, print.ncdf, set.missval.ncdf, sync.ncdf, var.def.ncdf.
redef.ncdf.

1

put.var.ncdf Write data to a netCDF file

Description

Writes data to an existing netCDF file. The variable to be written to must already exist
on disk.

Usage

put.var.ncdf(nc, varid, vals, start=NA, count=NA, verbose=FALSE)

Arguments

nc An object of class ncdf (as returned by either function open.ncdf() or
function create.ncdf()), indicating what file to write to.

varid What variable to write the data to. Can be a string with the name of
the variable, an object of class var.ncdf, or the ”id” field of a var.ncdf

object.

vals The values to be written.

start A vector of indices indicating where to start writing the passed values
(starting at 1). The length of this vector must equal the number of di-
mensions the variable has. Order is X-Y-Z-T (i.e., the time dimension is
last). If not specified, writing starts at the beginning of the file (1,1,1,...).

count A vector of integers indicating the count of values to write along each
dimension (order is X-Y-Z-T). The length of this vector must equal the
number of dimensions the variable has. If not specified and the variable
does NOT have an unlimited dimension, the entire variable is written.
If the variable has an unlimited dimension, this must be specified. As a
special case, the value ”-1” indicates that all entries along that dimension
should be written.

verbose If true, prints information while executing.

Details

This routine writes data values to a variable in a netCDF file. The file should have ei-
ther been created with create.ncdf, or opened with open.ncdf called with parameter
write=TRUE..

Note that the type of the values written to the file is determined when the variable is
created; in particular, it does not matter what type you pass to this function to be written.
In other words, if the variable was created with type ’integer’, passing double precision
values to this routine will still result in integer values being written to disk.

Values of ”NA” are supported; they are converted to the netCDF variable’s missing value
attribute before being written. See set.missval.ncdf for more information.

2

Data in a netCDF file is conceived as being a multi-dimensional array. The number and
length of dimensions is determined when the variable is created. The ’start’ and ’count’
indices that this routine takes indicate where the writing starts along each dimension, and
the count of values along each dimension to write.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

dim.def.ncdf, create.ncdf, get.var.ncdf.

Examples

Make a few dimensions we can use

nx <- 3

ny <- 4

nt <- 5

xvals <- (1:nx)*100.

dimX <- dim.def.ncdf("X", "meters", xvals)

dimY <- dim.def.ncdf("Y", "meters", (1:ny)*100.)

dimT <- dim.def.ncdf("Time", "seconds", (1:nt)/100., unlim=TRUE)

Make varables of various dimensionality, for illustration purposes

mv <- 1.e30 # missing value to use

var1d <- var.def.ncdf("var1d", "units", dimX, mv)

var2d <- var.def.ncdf("var2d", "units", list(dimX,dimY), mv)

var3d <- var.def.ncdf("var3d", "units", list(dimX,dimY,dimT), mv)

Create the test file

nc <- create.ncdf("writevals.nc", list(var1d,var2d,var3d))

Write some data to the file

data1d <- runif(nx)

put.var.ncdf(nc, var1d, data1d) # no start or count: write all values

put.var.ncdf(nc, var1d, 27.5, start=3, count=1) # Write a value to the third slot

data2d <- runif(nx*ny)

put.var.ncdf(nc, var2d, data2d) # no start or count: write all values

Write a 1-d slice to the 2d var

put.var.ncdf(nc, var2d, data1d, start=c(1,2), count=c(nx,1))

Note how "-1" in the count means "the whole dimension length",

which equals nx in this case

put.var.ncdf(nc, var2d, data1d, start=c(1,3), count=c(-1,1))

The 3-d variable has an unlimited dimension. We will loop over the timesteps,

writing one 2-d slice per timestep.

3

for(i in 1:nt)

put.var.ncdf(nc, var3d, data2d, start=c(1,1,i), count=c(-1,-1,1))

close.ncdf(nc)

#--

Illustrate creating a character type variable

#--

cnames <- c("red", "orange", "green", "yellow", "puce", "colorwithverylongname")

nstrings <- length(cnames)

#--

Make dimensions. Setting "dimnchar" to have a length of 12

means that the maximum color name

length can be 12. Longer names will be truncated to this.

#--

dimnchar <- dim.def.ncdf("nchar", "", 1:12)

dimcolorno <- dim.def.ncdf("colorno", "", 1:nstrings)

varcolors <- var.def.ncdf("colors", "", list(dimnchar, dimcolorno),

NA, prec="char")

ncid <- create.ncdf("colornames.nc", list(varcolors))

put.var.ncdf(ncid, "colors", cnames)

close.ncdf(ncid)

att.get.ncdf Get attribute from netCDF file

Description

Reads an attribute from a netCDF file.

Usage

att.get.ncdf(nc, varid, attname)

Arguments

nc An object of class ncdf (as returned from open.ncdf), indicating what
file to read from.

varid The variable whose attribute is to be read. Can be a character string with
the variable’s name, an object of class var.ncdf, or an id contained in
the ”id”field of a var.ncdf object. As a special case, if varid==0, then it
is assumed that we are reading a global attribute rather than a particular
variable’s attribute.

attname Name of the attribute to read.

4

Details

This function gets an attribute from a netCDF variable (or a global attribute from a netCDF
file, if the passed argument ”varid” is zero). Multiple attributes are returned in a vector.

Value

A list with two attributes, ”hasatt” and ”value”. ”hasatt” is TRUE if the named attribute
was found, and FALSE otherwise. ”value” is the (possibly vector) value of the attribute. If
the on-disk type of the attribute is short or integer, then an integer value is returned. If
the on-disk type is float or double, than a double value is returned. If the on-disk type is
character, than a character string is returned.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

att.put.ncdf.

Examples

Make a simple netCDF file

filename <- "atttest_types.nc"

dim <- dim.def.ncdf("X", "inches", 1:12)

var <- var.def.ncdf("Data", "unitless", dim, -1)

ncnew <- create.ncdf(filename, var)

Define some attributes of various types

attvaldbl <- 3.1415926536

att.put.ncdf(ncnew, var, "testatt_dbl", attvaldbl, prec="double")

attvalsingle <- c(1.0,4.0,9.0,16.0)

att.put.ncdf(ncnew, var, "testatt_single", attvalsingle)

varid=0 means it is a global attribute

att.put.ncdf(ncnew, 0, "globalatt_int", 32000, prec="int")

att.put.ncdf(ncnew, 0, "globalatt_short", 7, prec="short")

att.put.ncdf(ncnew, 0, "description",

"this is a test file with attributes of various types")

close.ncdf(ncnew)

Now illustrate the use of the att.get.ncdf function by reading them back in

doitfor <- function(nc, var, attname) {

av <- att.get.ncdf(nc, var, attname)

if(av$hasatt) {

print(paste("File",nc$filename,", var",var,"DOES have attribute",

attname))

print(paste("Storage mode:",storage.mode(av$value)))

print("Attribute value:")

5

print(av$value)

} else {

print(paste("File",nc$filename,", var",var,"does NOT have",

"attribute", attname))

}

}

nc <- open.ncdf(filename)

var <- "Data"

doitfor(nc, var, "testatt_dbl")

doitfor(nc, var, "testatt_single")

doitfor(nc, var, "testatt_wacko")

doitfor(nc, 0, "globalatt_int")

doitfor(nc, 0, "globalatt_short")

doitfor(nc, 0, "description")

att.put.ncdf Put an attribute into a netCDF file

Description

Writes an attribute to a netCDF file.

Usage

att.put.ncdf(nc, varid, attname, attval, prec=NA, verbose=FALSE,

definemode=FALSE)

Arguments

nc An object of class ncdf (as returned from open.ncdf), indicating what
file to write to.

varid The variable whose attribute is to be written. Can be a character string
with the variable’s name, an object of class var.ncdf, or an id contained
in the ”id”field of a var.ncdf object. As a special case, if varid==0, then
a global attribute is written instead of a variable’s attribute.

attname Name of the attribute to write.

attval Attribute to write.

prec Precision to write the attribute. If not specified, the written precision is
the same as the variable whose attribute this is. This can be overridden
by specifying this argument with a value of ”short”, ”single”, ”double”, or
”text”.

verbose Can be set to TRUE if additional information is desired while the attribute
is being created.

6

definemode If FALSE (the default), it is assumed that the file is NOT already in define
mode. Since the file must be in define mode for this call to work, the file
will be put in define mode, the attribute defined, and then the file taken
out of define mode. If this argument is set to TRUE, it is assumed the
file is already in define mode, and the file is also left in define mode.

Details

This function write an attribute to a netCDF variable (or a global attribute to a netCDF file,
if the passed argument ”varid” is zero). The type of the written variable can be controlled
by the ”prec” argument, if the default behavior (the precision follows that of the associated
variable) is not wanted.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

att.put.ncdf, att.text.get.ncdf.

Examples

Make a simple netCDF file

filename <- "atttest_types.nc"

dim <- dim.def.ncdf("X", "inches", 1:12)

var <- var.def.ncdf("Data", "unitless", dim, -1)

ncnew <- create.ncdf(filename, var)

Define some attributes of various types

attvaldbl <- 3.1415926536

att.put.ncdf(ncnew, var, "testatt_dbl", attvaldbl, prec="double")

attvalsingle <- c(1.0,4.0,9.0,16.0)

att.put.ncdf(ncnew, var, "testatt_single", attvalsingle)

varid=0 means it is a global attribute

att.put.ncdf(ncnew, 0, "globalatt_int", 32000, prec="int")

att.put.ncdf(ncnew, 0, "globalatt_short", 7, prec="short")

att.put.ncdf(ncnew, 0, "description",

"this is a test file with attributes of various types")

close.ncdf(ncnew)

7

close.ncdf Close a netCDF File

Description

Closes an open netCDF file, which flushes any unwritten data to disk.

Usage

close.ncdf(con, ...)

Arguments

con An object of class ncdf (as returned by either function open.ncdf() or
function create.ncdf(), indicating what file to read from.

... Other arguments passed to or from other methods.

Details

Data in a netCDF file might be cached in memory, for better performance. This data is
written out when the file is closed. Therefore, always remember to close the file when done
with it.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

sync.ncdf.

Examples

Not run: nc <- open.ncdf("salinity.nc")

Not run: data <- get.var.ncdf(nc) # Read the "only" var in the file

Not run: close.ncdf(nc)

8

create.ncdf Create a netCDF File

Description

Creates a new netCDF file, given the variables the new file is to contain.

Usage

create.ncdf(filename, vars, verbose=FALSE)

Arguments

filename Name of the netCDF file to be created.

vars Either an object of class var.ncdf describing the variable to be created,
or a vector of such objects to be created.

verbose If TRUE, then information is printed while the file is being created.

Details

This routine creates a new netCDF file on disk. It must be given the variables in the file
that will be created. Keep in mind that the new file may not actually be written to disk
until close.ncdf is called.

Value

An object of class ncdf, which has the fields described in open.ncdf.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

dim.def.ncdf, var.def.ncdf.

9

Examples

Define an integer dimension

dimState <- dim.def.ncdf("StateNo", "count", 1:50)

Make an integer variable. Note that an integer variable can have

a double precision dimension, or vice versa; there is no fixed

relationship between the precision of the dimension and that of the

associated variable. We just make an integer variable here for

illustration purposes.

varPop <- var.def.ncdf("Pop", "count", dimState, -1,

longname="Population", prec="integer")

Create a netCDF file with this variable

ncnew <- create.ncdf("states_population.nc", varPop)

Write some values to this variable on disk.

popAlabama <- 4447100

put.var.ncdf(ncnew, varPop, popAlabama, start=1, count=1)

close.ncdf(ncnew)

dim.def.ncdf Define a netCDF Dimension

Description

Defines a netCDF dimension. This dimension initially only exists in memory. It is added
to a netCDF variable using var.def.ncdf(), and written to disk using create.ncdf().

Usage

dim.def.ncdf(name, units, vals, unlim=FALSE)

Arguments

name Name of the dimension to be created (character string).

units The dimension’s units (character string).

vals The dimension’s values (vector of numeric type). If integers are passed,
the associated dimensional variable will be integer type; otherwise, it will
be double precision.

unlim If TRUE, this dimension is unlimited.

10

Details

This routine creates a netCDF dimension in memory. The dimension can then be passed
to the routine var.def.ncdf() when creating a variable.

Note that this interface to the netCDF library includes that more than the minimum re-
quired by the netCDF standard. I.e., the netCDF standard allows dimensions with no units
or values. This call requires units and values, as it is useful to ensure that all dimensions
have units and values, and considerably easier to include them in this call than it is to
add them later. The units and values are implemented through ”dimensional variables,”
which are variables with the same name as the dimension. These dimensional variables are
created automatically – there is no need for the user to create them explicitly. Dimensional
variables are standard practice in netCDF files.

The dimensional variable is usually created as a double precision floating point. The other
possibility is to pass integer values (using as.integer, for example), in which case the
dimensional variable with be integer.

The return value of this function is an object of class dim.ncdf, which describes the newly
created dimension. The dim.ncdf object is used for more than just creating a new dimen-
sion, however. When opening an existing file, function open.ncdf() returns a ncdf class
object, which itself has a list of dim.ncdf objects that describe all the dimensions in that
existing file.

The dim.ncdf object has the following fields, which are all read only: 1) name, which is a
character string containing the name of the dimension; 2) units, which is a character string
containing the units for the dimension, if there are any (technically speaking, this is the
”units” attribute of the associated coordinate variable); 3) vals, which is a vector containing
the dimension’s values (i.e., the values of the associated coordinate variable, or, if there
is none, an integer sequence from 1 to the length of the dimension); 3) len, which is the
length of this dimension; 4) unlim, which is a boolean indicating whether or not this is an
unlimited dimension.

Value

An object of class dim.ncdf that can later be passed to var.def.ncdf().

Note

It is good practice, but not necessary, to pass the dimension’s values to this routine when
the dimension is created. It is also possible to write them later with a call to ’put.var.ncdf’,
using as the dimension name as the ’varid’ in the call. This is useful when creating large
variables with long unlimited dimensions; it can take a long time to write out the unlimited
dimension’s values. In this case, it can be more efficient to step through the file, writing
one timestep at a time, and write that timestep’s dimensional value at the same time.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

11

See Also

var.def.ncdf, create.ncdf

Examples

Define some straightforward dimensions

x <- dim.def.ncdf("Lon", "degreesE", 0.5:359.5)

y <- dim.def.ncdf("Lat", "degreesN", as.double(-89:89))

t <- dim.def.ncdf("Time", "days since 1900-01-01", 1:10, unlim=TRUE)

Make a variable with those dimensions. Note order: time is LAST

salinity <- var.def.ncdf("Salinity", "ppt", list(x,y,t), 1.e30)

Create a netCDF file with this variable

ncnew <- create.ncdf("salinity.nc", salinity)

close.ncdf(ncnew)

Now, illustrate some manipulations of the dim.ncdf object.

filename <- "salinity.nc"

nc <- open.ncdf(filename)

print(paste("File",filename,"contains",nc$ndims,"dimensions"))

for(i in 1:nc$ndims) {

print(paste("Here is information about dimension number",i,":"))

d <- nc$dim[[i]]

print(paste(" Name :",d$name))

print(paste(" Units :",d$units))

print(paste(" Length:",d$len))

print(" Values:")

print(d$vals)

print(paste(" Unlimited:",d$unlim))

}

enddef.ncdf Takes a netCDF file out of define mode

Description

Changes a netCDF that is currently in define mode back into data mode.

Usage

enddef.ncdf(nc)

Arguments

nc An object of class ncdf (as returned by either function open.ncdf() or
function create.ncdf(), indicating what file to read from.

12

Details

NetCDF files can be in ”define mode”, at which time dimensions and variables can be
defined, or new attributes added to a file, or in ”data mode”, at which time data can be
read from the file. This call puts a file that is currently in define mode back into data mode.

Note

The typical user will never need this call, nor will ever have to worry about ”define mode”
or ”data mode”. THIS CALL IS PROVIDED FOR ADVANCED USERS ONLY! If the user
goes through this package’s standard functional interface, the file will always automatically
be set to whatever mode it needs to be in without the user having to do anything. In
particular, the call to write an attribute (att.put.ncdf) handles this automatically. An
example of the kind of situation where you would need this call is if you are adding a new
variable to an already-existing netCDF file. This case is not really handled by this package.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

redef.ncdf.

Examples

This function is for advanced useage only, and will never

be needed by the typical users R code.

get.var.ncdf Read data from a netCDF file

Description

Reads data from an existing netCDF file.

Usage

get.var.ncdf(nc, varid=NA, start=NA, count=NA, verbose=FALSE,

signedbyte=TRUE, forcevarid=NA)

13

Arguments

nc An object of class ncdf (as returned by either function open.ncdf() or
function create.ncdf(), indicating what file to read from.

varid What variable to read the data from. Can be a string with the name of
the variable, an object of class var.ncdf, or the ”id” field of a var.ncdf

object. If left unspecified, the function will determine if there is only one
variable in the file and, if so, read from that. If left unspecified and there
are multiple variables in the file, an error is generated. This argument can
also, optionally, specify the name of a dimension (usually the unlimited
dimension) in order to read values from a coordinate variable. Note this is
not usual practice, because the dim.ncdf object already contains all the
dimension’s values, in the field named ”vals”. However, it can sometimes
be faster to turn off this automatic reading of the unlimited dimension’s
values by using open.ncdf(filename, readunlim=FALSE), then read the
dimension values in later with this function.

start A vector of indices indicating where to start reading the passed values
(beginning at 1). The length of this vector must equal the number of
dimensions the variable has. Order is X-Y-Z-T (i.e., the time dimension is
last). If not specified, reading starts at the beginning of the file (1,1,1,...).

count A vector of integers indicating the count of values to read along each
dimension (order is X-Y-Z-T). The length of this vector must equal the
number of dimensions the variable has. If not specified and the variable
does NOT have an unlimited dimension, the entire variable is read. As a
special case, the value ”-1” indicates that all entries along that dimension
should be read.

verbose If TRUE, then progress information is printed.

signedbyte If TRUE (default), then on-disk byte variables are interpreted as signed.
This is in accord with the netCDF standard. If FALSE, then on-disk byte
variables are interpreted as unsigned.

forcevarid Internal use only. This indicates that the integer value passed in this
argument is the actual variable ID to use, and no interpretation of the
’varid’ argument is done.

Details

This routine reads data values from a variable in a netCDF file. The file must already have
been opened with open.ncdf.

Returned values will be in ordinary R double precision if the netCDF variable type is float
or double. Returned values will be in R’s integer storage mode if the netCDF variable
type is short or int. Returned values will be of character type if the netCDF variable is of
character type.

Values of ”NA” are supported; values in the data file that match the variable’s missing
value attribute are automatically converted to ”NA” before being returned to the user. See
set.missval.ncdf for more information.

Data in a netCDF file is conceived as being a multi-dimensional array. The number and
length of dimensions is determined when the variable is created. The ’start’ and ’count’

14

indices that this routine takes indicate where the writing starts along each dimension, and
the count of values along each dimension to write. Note that the special count value ”-1”
means ”all the values along that dimension”.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

put.var.ncdf.

Examples

Start with the simplest example. If the file only has one variable in it,

you can read the data as easily as this:

#

nc <- open.ncdf("salinity.nc")

NOTE how not specifying varid reads the "only" var in the file

data <- get.var.ncdf(nc)

close.ncdf(nc)

In this next example we read values from file "writevals.nc", which is created by

the R code in the example section for function "put.var.ncdf". We open the

file with readunlim=FALSE for potentially faster access, and to illustrate

(below) how to read in the unlimited dimension values.

#

nc <- open.ncdf("writevals.nc", readunlim=FALSE)

print(paste("The file has",nc$nvars,"variables"))

This illustrates how to read all the data from a variable

v1 <- nc$var[[1]]

data1 <- get.var.ncdf(nc, v1) # by default, reads ALL the data

print(paste("Data for var ",v1$name,":",sep=""))

print(data1)

This shows how the shape of the read data is preserved

v2 <- nc$var[[2]]

data2 <- get.var.ncdf(nc, v2)

print(paste("Var 2 has name",v2$name,"and is of shape",dim(data2),

". Here are the values:"))

print(data2)

This illustrates how to read data one timestep at a time. In this

example we will elaborately show how to deal with a variable whose

shape is completely unknown (i.e., how many dimensions, and what their

sizes are). We will also, for illustration of a common case, show how

to read in the values of the time dimension at each timestep.

15

v3 <- nc$var[[3]]

varsize <- v3$varsize

ndims <- v3$ndims

nt <- varsize[ndims] # Remember timelike dim is always the LAST dimension!

for(i in 1:nt) {

Initialize start and count to read one timestep of the variable.

start <- rep(1,ndims) # begin with start=(1,1,1,...,1)

start[ndims] <- i # change to start=(1,1,1,...,i) to read timestep i

count <- varsize # begin w/count=(nx,ny,nz,...,nt), reads entire var

count[ndims] <- 1 # change to count=(nx,ny,nz,...,1) to read 1 tstep

data3 <- get.var.ncdf(nc, v3, start=start, count=count)

Now read in the value of the timelike dimension

timeval <- get.var.ncdf(nc, v3$dim[[ndims]]$name, start=i, count=1)

print(paste("Data for variable",v3$name,"at timestep",i,

" (time value=",timeval,v3$dim[[ndims]]$units,"):"))

print(data3)

}

close.ncdf(nc)

ncdf-internal Internal ncdf functions

Description

Internal ncdf functions.

Details

These are not to be called by the user.

open.ncdf Open a netCDF File

Description

Opens an existing netCDF file for reading (or, optionally, writing).

Usage

open.ncdf(con, write=FALSE, readunlim=TRUE, verbose=FALSE, ...)

16

Arguments

con Name of the existing netCDF file to be opened.

write If FALSE (default), then the file is opened read-only. If TRUE, then
writing to the file is allowed.

readunlim When invoked, this function reads in the values of all dimensions from the
associated variables. This can be slow for a large file with a long unlimited
dimension. If set to FALSE, the values for the unlimited dimension are
not automatically read in (they can be read in later, manually, using
get.var.ncdf()).

... Arguments passed to or from other methods.

verbose If TRUE, then messages are printed out during execution of this function.

Details

This routine opens an existing netCDF file for reading (or, if write=TRUE, for writing).
To create a new netCDF file, use create.ncdf() instead.

In addition to simply opening the file, information about the file and its contents is read in
and stored in the returned object, which is of class ncdf. This class has the following user-
accessible fields, all of which are read-only: 1) filename, which is a character string holding
the name of the file; 2) ndims, which is an integer holding the number of dimensions in the
file; 3) nvars, which is an integer holding the number of the variables in the file that are
NOT coordinate variables (aka dimensional variables); 4) natts, which is an integer holding
the number of global attributes; 5) unlimdimid, which is an integer holding the dimension
id of the unlimited dimension, or -1 if there is none; 6) dim, which is a list of objects of class
dim.ncdf; 7) var, which is a list of objects of class var.ncdf; 8) writable, which is TRUE
or FALSE, depending on whether the file was opened with write=TRUE or write=FALSE.

The concept behind the R interface to a netCDF file is that the ncdf object returned by
this function, as well as the list of dim.ncdf objects contained in the ncdf object’s ”dim”
list and the var.ncdf objects contained in the ncdf object’s ”var” list, completely describe
the netCDF file. I.e., they hold the entire contents of the file’s metadata. Therefore,
there are no R interfaces to the explicit netCDF query functions, such as ”nc inq nvars”or
”nc inq natts”. The upshot is, look in the ncdf object or its children to get information about
the netCDF file. (Note: the dim.ncdf object is described in the help file for dim.def.ncdf;
the var.ncdf object is described in the help file for var.def.ncdf).

Value

An object of class ncdf that has the fields described below.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

17

See Also

dim.def.ncdf, var.def.ncdf.

Examples

Define an integer dimension

dimState <- dim.def.ncdf("StateNo", "count", 1:50)

Make an integer variable. Note that an integer variable can have

a double precision dimension, or vice versa; there is no fixed

relationship between the precision of the dimension and that of the

associated variable. We just make an integer variable here for

illustration purposes.

varPop <- var.def.ncdf("Pop", "count", dimState, -1,

longname="Population", prec="integer")

Create a netCDF file with this variable

ncnew <- create.ncdf("states_population.nc", varPop)

Write some values to this variable on disk.

popAlabama <- 4447100

put.var.ncdf(ncnew, varPop, popAlabama, start=1, count=1)

Add source info metadata to file

att.put.ncdf(ncnew, 0, "source", "Census 2000 from census bureau web site")

close.ncdf(ncnew)

Now open the file and read its data

ncold <- open.ncdf("states_population.nc")

data <- get.var.ncdf(ncold)

print("here is the data in the file:")

print(data)

close.ncdf(ncold)

print.ncdf Print Information About a netCDF File

Description

Prints information about a netCDF file, including the variables and dimensions it contains.

Usage

print.ncdf(x, ...)

18

Arguments

x An object of class ”ncdf”.

... Extra arguments are passed to the generic print function.

Details

NetCDF files contain variables, which themselves have dimensions. This routine prints out
useful information about a netCDF file’s variables and dimensions. It is overloaded on the
regular print function, so if ”nc” is an object of class ”ncdf”, then just calling print(nc)

will suffice. Objects of class ”ncdf” are returned from open.ncdf.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

var.def.ncdf

Examples

Open a netCDF file, print information about it

nc <- open.ncdf("salinity.nc")

print(nc)

redef.ncdf Puts a netCDF file back into define mode

Description

Puts a netCDF that is not currently in define mode back into define mode.

Usage

redef.ncdf(nc)

Arguments

nc An object of class ncdf (as returned by either function open.ncdf() or
function create.ncdf(), indicating what file to read from.

19

Details

NetCDF files can be in ”define mode”, at which time dimensions and variables can be
defined, or new attributes added to a file, or in ”data mode”, at which time data can be
read from the file. This call puts a file that is currently in data mode back into define mode.

Note

The typical user will never need this call, nor will ever have to worry about ”define mode”
or ”data mode”. THIS CALL IS PROVIDED FOR ADVANCED USERS ONLY! If the user
goes through this package’s standard functional interface, the file will always automatically
be set to whatever mode it needs to be in without the user having to do anything. In
particular, the call to write an attribute (att.put.ncdf) handles this automatically. An
example of the kind of situation where you would need this call is if you are adding a new
variable to an already-existing netCDF file. This case is not really handled by this package.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

enddef.ncdf.

Examples

This function is for advanced useage only, and will never

be needed by the typical users R code.

set.missval.ncdf Set the Missing Value Attribute For a netCDF Variable

Description

Sets the missing value attribute for a netCDF variable.

Usage

set.missval.ncdf(nc, varid, missval)

20

Arguments

nc An object of class ncdf, as returned by open.ncdf or create.ncdf.

varid The name, var.ncdf object, or variable ID whose missing value will be
set.

missval The missing value to set.

Details

Missing values are special values in netCDF files whose value is to be taken as indicat-
ing the data is ”missing”. This is a convention, and is indicated by the netCDF variable
having an attribute named ”missing value” that holds this number. This function sets the
”missing value” attribute for a variable.

R uses a similar concept to indicate missing values, the ”NA” value. When the ncdf library
reads in data set from a pre-existing file, all data values that equal that variable’s missing
value attribute appear to the R code as being ”NA” values. When the R code writes values
to a netCDF variable, any ”NA” values are set to that variable’s missing value before being
written out. This makes the mapping between netCDF’s ”missing value” attribute and R’s
”NA” values transparent to the user.

For this to work, though, the user still has to specify a missing value for a variable. Usually
this is specified when the variable is created, as a required argument to var.def.ncdf.
However, sometimes it is useful to add (or change) a missing value for variable that already
exists in a disk file. This function enables that.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

var.def.ncdf.

Examples

Make an example netCDF file with a given missing value. We will

then change the missing value in the file using set.missval.ncdf.

origMissVal <- -1.

dimX <- dim.def.ncdf("X", "meters", 1:7)

varAlt <- var.def.ncdf("Altitude", "km", dimX, origMissVal)

ncnew <- create.ncdf("transect.nc", varAlt)

data <- c(10.,2.,NA,1.,7.,NA,8.)

put.var.ncdf(ncnew, varAlt, data)

close.ncdf(ncnew)

At this point, the actual data values in the netCDF

21

file will be: 10 2 -1 1 7 -1 8

because the "NA" values were filled with the missing

value, -1. Also, the missing_value attribute of variable

"varAlt" will be equal to -1.

Now change the missing value to something else. Remember

we have to open the file as writable to be able to change

the missing value on disk!

newMissVal <- 999.9

nc <- open.ncdf("transect.nc", write=TRUE)

varname <- "Altitude"

data <- get.var.ncdf(nc, varname) # data now has: 10., 2., NA, 1., 7., NA, 8.

print(data)

set.missval.ncdf(nc, varname, newMissVal)

put.var.ncdf(nc, varname, data)

close.ncdf(nc)

Now, the actual data values in the netCDF file will be:

10 2 999.9 1 7 999.9 8

and the variables "missing_value" attributre will be 999.9

NOTE that we had to explicitly read in the data and write

it out again in order for the on-disk missing values in the

data array to change! The on-disk missing_value attribute for

the variable is set automatically by this function, but it is

up to you whether or not you want to read in all the files

data and change the values to the new missing value.

sync.ncdf Synchronize (flush to disk) a netCDF File

Description

Flushes any pending operations on a netCDF file to disk.

Usage

sync.ncdf(nc)

Arguments

nc An object of class ncdf (as returned by either function open.ncdf() or
function create.ncdf(), indicating what file to read from.

22

Details

Data in a netCDF file might be cached in memory, for better performance. An example of
when this might be bad is if a long-running job writes one timestep of the output file at a
time; if the job crashes near the end, the results of many timesteps might be lost. In such
an event, the user can manually force any cached data to be written to disk using this call.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

Examples

The time you would use the sync.ncdf function is when you have an unlimited

dimension and are writing to the file timestep-by-timestep. Make a netCDF file

that has an unlimited dimension for illustration.

nx <- 5

ny <- 8

dimx <- dim.def.ncdf("X", "meters", 1:nx)

dimy <- dim.def.ncdf("Y", "meters", 1:ny)

dimt <- dim.def.ncdf("Time", "days since 1900-01-01", 0, unlim=TRUE)

vartemp <- var.def.ncdf("Temperature", "degC", list(dimx,dimy,dimt), 1.e30)

nc <- create.ncdf("temperature.nc", vartemp)

nt <- 10 # Imagine this is actually some very large number of timesteps

for(i in 1:nt) {

Long, slow computation to get the data ... for illustration, we just

use the following:

data <- runif(nx*ny)

Write the data to this timestep

put.var.ncdf(nc, vartemp, data, start=c(1,1,i), count=c(nx,ny,1))

Write the time value for this timestep as well

timeval <- i*10

put.var.ncdf(nc, dimt, timeval, start=i, count=1)

Flush this timesteps data to the file so we dont lose it

if there is a crash or other problem

sync.ncdf(nc)

}

Always remember to close the file when done!!

close.ncdf(nc)

23

var.def.ncdf Define a netCDF Variable

Description

Defines a netCDF variable. This variable initially only exists in memory. It is written to
disk using create.ncdf().

Usage

var.def.ncdf(name, units, dim, missval, longname=name, prec="single")

Arguments

name Name of the variable to be created (character string).

units The variable’s units (character string).

dim The variable’s dimension(s) (one or a list of ”dim.netcdf” class objects).

missval The variable’s missing value.

longname Optional longer name for the variable, which is assigned to the variables
”long name” attribute. For example, a variable named ”TS” might have
the longname ”Surface Temperature”

prec Precision of the created variable. Valid options: ’short’ ’integer’ ’single’
’double’ ’char’.

Details

This routine creates a netCDF variable in memory. The variable can then be passed to the
routine create.ncdf when writing a file to disk.

Note that this interface to the netCDF library includes that more than the minimum re-
quired by the netCDF standard. I.e., the netCDF standard allows variables with no units
or missing values. This call requires units and a missing value, as it is useful to ensure that
all variables have units and missing values, and considerably easier to include them in this
call than it is to add them later. The units and missing value are implemented through
attributes to the variable, named ”units”and ”missing value”, respectively. This is standard
practice in netCDF files.

After a variable is defined with this call, and created on disk using create.ncdf, then data
values for the variable can be written to disk using put.var.ncdf.

This function returns a var.ncdf object, which describes the newly-created variable. How-
ever, the var.ncdf object is used for more than just creating new variables. The function
open.ncdf returns a ncdf object that itself contains a list of var.ncdf objects that describe
the variables in an existing, on-disk netCDF file. (Note that coordinate variables are NOT
included in this list. Attributes of the coordinate variables are kept in the dim.ncdf object
instead.)

24

The var.ncdf object has the following fields, which are all read-only: 1) name, which is a
character string containing the name of the variable; 2) units, which is a character string
containing the contents of the variable’s ”units” attribute; 3) missval, which contains the
contents of the variable’s ”missing value” attribute; 4) longname, which is the contents of
the variable’s ”long name” attribute, or defaults to the name of the variable if there is no
”long name” attribute; 5) ndims, which is the number of dimensions this variable has; 6)
dim, which is a list of objects of class ”dim.ncdf” (see dim.def.ncdf), and describe this
variable’s dimensions; 7) unlim, which is TRUE if this variable has an unlimited dimension
and FALSE otherwise; 8) varsize, which is a convenience array that gives the shape of the
variable (in XYZT ordering).

Note that the missval attribute does not need to be used much in R, because R’s special
value NA is fully supported. I.e., when data is read in from an existing file, any values equal
to the ”missing” value are set to NA. When data is written out, any NAs are set equal to
the missing value. If not explicitly set by the user, a default value of 1.e30 is used for the
missing value.

Value

An object of class var.ncdf that can later be passed to create.ncdf().

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

See Also

dim.def.ncdf, create.ncdf, put.var.ncdf.

Examples

Define an integer dimension

dimState <- dim.def.ncdf("StateNo", "count", 1:50)

Make an integer variable. Note that an integer variable can have

a double precision dimension, or vice versa; there is no fixed

relationship between the precision of the dimension and that of the

associated variable. We just make an integer variable here for

illustration purposes.

varPop <- var.def.ncdf("Pop", "count", dimState, -1,

longname="Population", prec="integer")

Create a netCDF file with this variable

ncnew <- create.ncdf("states_population.nc", varPop)

Write some values to this variable on disk.

popAlabama <- 4447100

put.var.ncdf(ncnew, varPop, popAlabama, start=1, count=1)

25

Add source info metadata to file

att.put.ncdf(ncnew, 0, "source", "Census 2000 from census bureau web site")

close.ncdf(ncnew)

Now illustrate some manipulations of the var.ncdf object

filename <- "states_population.nc"

nc <- open.ncdf(filename)

print(paste("File",nc$filename,"contains",nc$nvars,"variables"))

for(i in 1:nc$nvars) {

v <- nc$var[[i]]

print(paste("Here is information on variable number",i))

print(paste(" Name: ",v$name))

print(paste(" Units:",v$units))

print(paste(" Missing value:",v$missval))

print(paste(" # dimensions :",v$ndims))

print(paste(" Variable size:",v$varsize))

}

Illustrate creating variables of various types. You will find

that the type of the missing_value attribute automatically follows

the type of the variable.

dimt <- dim.def.ncdf("Time", "days", 1:3)

missval <- -1

varShort <- var.def.ncdf("varShort", "meters", dimt, missval, prec="short")

varInt <- var.def.ncdf("varInt", "meters", dimt, missval, prec="integer")

varFloat <- var.def.ncdf("varFloat", "meters", dimt, missval, prec="single")

varDouble<- var.def.ncdf("varDouble","meters", dimt, missval, prec="double")

nctypes <- create.ncdf("vartypes.nc", list(varShort,varInt,varFloat,varDouble))

close.ncdf(nctypes)

version.ncdf Report version of ncdf library

Description

Returns a string that is the version number of the ncdf library

Usage

version.ncdf()

Arguments

Details

Note that the returned value it is a string, not a floating point number.

26

Value

A string (not float) that is the version number of the ncdf library.

Author(s)

David W. Pierce 〈dpierce@ucsd.edu〉

References

http://www.unidata.ucar.edu/packages/netcdf/

27

	ncdf
	put.var.ncdf
	att.get.ncdf
	att.put.ncdf
	close.ncdf
	create.ncdf
	dim.def.ncdf
	enddef.ncdf
	get.var.ncdf
	ncdf-internal
	open.ncdf
	print.ncdf
	redef.ncdf
	set.missval.ncdf
	sync.ncdf
	var.def.ncdf
	version.ncdf

