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1. Data 
The analysis uses observed snow water equivalent (SWE) at the beginning of April, 
precipitation (P), temperature, and naturalized river flow.  The SWE data are from 
snow courses across the western U.S., obtained from the U.S. Department of 
Agriculture National Resources Conservation Service and from the California 
Department of Water Resources California Data Exchange Center.  We selected a 
fixed subset of ~660 snow course sites that had at least 80% data coverage between 
1950 and 1999.  To exclude the possibility that our results would be biased by 
selecting stations that had all the missing values at the beginning of the period, we 
only included stations that had data in 1950 AND at least 80% coverage between 
1950 and 1959 (inclusive), in addition to the overall requirement of 80% coverage 
between 1950 and 1999.    
 
For temperature (JFM daily minimum, Tmin) and precipitation we used a gridded 
data set based on National Weather Service co-operative network observations (1).  
For naturalized river flow in the three major western drainages, we used data from 
the US geological Survey (2) and the U.S. Bureau of Reclamation.  Details 
regarding all these data sets are given in (3), (4), and (5), respectively. 
 
We regionally averaged the SWE/P and temperature data to nine major mountain 
chains in the western U.S. The main reason for doing this is to average random 
weather fluctuations across multiple locations. With ~660 snow courses and 9 
regions, there are dozens of courses in each region, which helps minimize the noise. 
The exact regions chosen are arbitrary, but guided by traditional geographic features 
such as commonly recognized mountain ranges and state boundaries. The intent was 
to have the regions be identifiable to the inhabitants, and neither so large as to be 
irrelevant nor so small as to be of local concern only, since our desire was to 
illustrate how climate change might actually affect people.  

2. Univariate D&A 
We applied a univariate detection and attribution (D&A) analysis to each of the 
individual variates – SWE/P, JFM daily Tmin, and river flow center of timing (CT).  
The separate analyses were necessary to address the unique characteristics of each 
data type.  The D&A work on air temperature is covered in (4), river flow by (5) and 
snow water equivalent by (3).  These research efforts provide the foundation for the 
multivariable results presented here. 
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3. Climate model data 
The anthropogenic runs in PCM and MIROC have significant differences in external 
forcings.  Both PCM and MIROC use anthropogenic forcings of greenhouse gases, 
ozone, and the direct effect of sulfate aerosols.  In addition to these, MIROC 
includes the indirect effect of sulfate aerosols, direct and indirect effect of 
carbonaceous aerosols, and land-use change as additional anthropogenic forcings.  
The indirect effect of aerosols, which give a cooling effect, is the most influential 
among them, although there is still large uncertainty in quantitative estimates of its 
radiative forcing.  For example, see Fig.2.24 of the IPCC AR4 of WG1 ((6), 
available from IPCC web site).  This results in the fact that the MIROC climate 
warming signal, while having a fingerprint quite similar to that of PCM and of the 
observations, is weaker.  The physics resulting in this relatively cooler signal are 
highly uncertain, and observations in fact suggest that the aerosol forcing term is 
over estimated in the MIROC model. 
 
Estimates of natural internal climate variability were obtained from two long pre-
industrial control runs: a 750 year run of PCM and an 850 year run from the 
CCSM3-FV (7).  CCSM3-FV was spun up for 240 years before use. These models 
were selected for their combination of exhibiting a realistic climate and level of 
natural variability in our area of interest, and the availability of many centuries of 
daily data.  Additionally, the attraction of CCSM3-FV is a relatively high 
atmospheric resolution for a millennium-scale run (1.25O longitude by 1O latitude, 
vs. T42 spectral resolution, approximately equivalent to 2.8O, for PCM), which we 
deemed beneficial for a regional D&A study. Both models are fully coupled ocean-
atmosphere models run without any flux correction. The PCM was downscaled 
using the BCSD method while the CCSM3-FV global model was downscaled using 
the CA method; as noted in the main text, our comparison of the two methods found 
only modest differences between them.  The downscaled physical fields from each 
global field were used as input to VIC model simulations, which yielded the 
required hydrological variables.  An analysis of the two different simulations of 
natural variability showed them to be sufficiently similar to justify lumping them for 
further significance tests of signal to noise (S/N).   
 
In summary, all the global model output, without exception, was downscaled.  All 
the temperature, precipitation, and snow depth model output, without exception, was 
masked to the locations of the snow courses (as interpolated to the nearest grid box 
of the downscaled, fine resolution grid: 1/8 x 1/8 degree lat/lon). The river flow 
model output was taken from the river routing model at the locations corresponding 
to the actual river gauges we used (The Dalles, Lees Ferry, and so on). 

4. Fingerprinting and Signal Strength 
The anthropogenic fingerprint was defined as the leading EOF of the joint 
(concatenated) data set consisting of SWE/P, JFM Tmin and river CT. SWE/P and 
Tmin were each averaged across each of 9 regions as described in the main text. 
Thus, there were nine temperature, nine SWE/P, and three river CT time series, for a 
total of 21 time series, each 50 consecutive years long. We variously tried forming 
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the fingerprint from the ensemble average of the PCM anthropogenic runs only, the 
MIROC anthropogenic runs only, and the combination of both, but found the results 
to be insensitive to these choices. Results in the main text were obtained with the 
fingerprint using the ensemble average of PCM and MIROC combined. The 
fingerprint was normalized such that the associated principal component was 
standardized (in contrast to the more common normalization that the leading EOF 
have length 1); this aids in physical interpretation of the results. 
 
Due to the different units for each variable, we normalized each variate by its own 
standard deviation before the EOF was computed (8).  In order to equally weight the 
3 river time series with the 9 SWE/P and Tmin series, we weighted the river series 
by 31/2.  Each individual variate time series was also normalized by the fraction of 
area it represented relative to the entire area represented by that variate, so that time 
series representing larger areas would contribute proportionally more. As a 
sensitivity test, we also tried setting all the areal weights to 1, and found this did not 
affect the results (not shown).  Note we did not have to use an optimal detection 
approach (e.g., 9) since the signal was strong enough to be detected without 
additional filtering. 
 
The signal strength S was calculated as 
 

)),()(( txDxFtrendS w•=                                                                            (S1) 
 
where F(x) is the fingerprint and ‘trend’ indicates the slope of the least-squares best 
fit line. Dw(x,t) are the 21 regional/variate time series (area weighted as described 
above) taken from the observations, any individual model run, or in the case of a 
model’s ensemble averaged statistics, the model ensemble-averaged time series. The 
time mean of Dw(x,t) was removed before the projection. 

5. Significance testing 
The significance tests in the lower panel of Figure 4 were conducted using an 
ensemble approach. Instead of comparing each run against a single distribution 
describing natural variability, we had sufficient data and realizations to test entire 
ensembles.  The ensemble approach reduces the random “weather noise”, helping to 
define the signal common to the model ensemble members. For example, MIROC 
provided 10 realizations of the 21 multivariable time series, from which we first 
calculated the ensemble-averaged signal strength for the 10 realizations, as 
described above. We then randomly sampled the control run to obtain ten 
independent groups of the 21 variates, each 50 consecutive years long, and 
calculated their ensemble average signal strength.  This process was repeated 10,000 
times in order to construct the empirical probability distribution function (pdf) of 
having 10 member ensembles of the control run (i.e., natural variability) having a 
signal strength equal to or exceeding that of the anthropogenic runs.  Ensemble 
sampling considerably increases the signal to noise ratio of the anthropogenically 
forced runs, by reducing the effects of natural variability uncorrelated between 
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different ensemble members.  We also projected the single realization of the 
observations onto the model fingerprint.   
 
The results reported in the main paper were obtained by combining the estimates of 
natural variability from PCM and CCSM3-FV.  We also repeated the significance 
tests for various permutations of signal and noise (Fig S1).  The results show that:  
1) the pdf of either of the natural variability projections is well fit by a Gaussian 
distribution.  2) it makes little difference which combination of signal and noise we 
use; and 3) combining noise estimates makes little difference to the significance 
levels.   Various combinations of model-estimated natural variability and 
anthropogenic signal all indicate that natural variability cannot account for the 
changes seen over the last 50 years in the hydrological cycle of the West. 

6. Precipitation 
In the main paper, we described the negative D&A results that were obtained when 
we used total precipitation, separately, to explain the observed hydrological changes.  
We also included precipitation in the multivariable metric and computed the 
fingerprint with that variable included.  The relative contributions to the energy in 
the multivariate fingerprint were SWE/P at 45.3%, Tmin at 27.1%, river flow CT at 
24.3% and total precipitation at 3.3%.  The total precipitation alone clearly did not 
contribute appreciably to the fingerprint, and hence was omitted from the 
multivariate analysis described in the main text. 

7. Sensitivity tests 
Figure 5 shows that the results of our study are insensitive to the two different 
estimates of natural variability.  Figure 4 shows that the results are also insensitive 
to choice of downscaling method, although the CA approach gave a somewhat 
weaker signal than the BCSD approach. Previous work has found only minor 
differences between these downscaling mechanisms (10).  Comparing our 
PCM/BCSD and PCM/CA results, we also find only minor differences between the 
two methods.  So the overall set of runs is a compromise that allowed us to complete 
the project in a timely way and yet not be dependent on a single downscaling 
method. Figure 3 shows that the fingerprints derived from the two models are 
similar.  Figure S2 presents these findings together in a common framework which 
illustrates that the D&A results are robust to perturbations of the estimated 
background noise, the model fingerprint used, and method of downscaling. 
 
A critical question has to do with the levels of natural variability used in the 
significance tests.  Are they realistic?  We investigate this question by verifying (a) 
the power spectra of our modeled Colorado River flow and (b) the low frequency 
variance in downscaled temperature minima and maxima.  The power spectra of 
Colorado River flow are from the downscaled, VIC-modeled 850 year CCSM-FV 
and 750 year PCM control run, and involve both downscaling methods.  We choose 
the Colorado River because its flow is an integrating mechanism over a large region, 
and in particular, a region where current climate models predict reductions in runoff 
as global warming progresses.  River flow depends on both precipitation and 
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temperature, so it is a good proxy for the other metrics we use in this article. Future 
extensions of this comparison to include other major western US river basins – e.g., 
the Columbia River and California rivers, as well as to the temperature and snow 
pack characteristics are beyond the scope of the present effort, but would provide 
perspective on the robustness of the verification in a broader range of hydro climatic 
regimes.   
 
The modeled flow power spectra compare well with that obtained from the 
paleohydrologic tree ring reconstructions of (11).  Figure S3 shows the model power 
spectra are similar to and largely encompassed by the 5-95% confidence limits of 
the reconstructed river flow.  Over the low frequency range of interest here (e.g., 
less than 0.1 cycles per year), there is little statistically significant difference 
between the modeled variables and reconstructed observations, although PCM tends 
to have too much variability at the very lowest frequencies considered (<0.004 
cycles/year).    The same is true for the low frequency variance in observed Tmin 
and Tmax in the mountain regions shown in Figure 1.  We find that both variables 
are well matched with their downscaled CCSM3-FV and PCM-based counterparts, 
further demonstrating that the levels of natural variability used in this study are 
realistic.  We therefore conclude that the estimates of natural variability that we have 
used in the significance test are realistic. 
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Figure S1. The statistical significance of the signal strength in various 
anthropogenically forced model runs, taken in combination with the two estimates of 
natural internal variability from the control runs, as indicated by each panel’s title. 
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Figure S2. Effect of using different model fingerprints (top) and downscaling 
methods (bottom) on the detection time. 
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Figure S3. Power spectra of Colorado River flow at Lee’s Ferry. Grey: 95% 
confidence interval on flow reconstructed from proxy indicators over a 1200 yr 
period (11). Red: spectrum from PCM control run. Blue: spectrum from CCSM3-FV 
control run. 
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