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ABSTRACT 27 

Climate model simulations disagree on whether future precipitation will increase 28 

or decrease over California, which has impeded efforts to anticipate and adapt to 29 

human-induced climate change. This disagreement is explored in terms of daily 30 

precipitation frequency and intensity. It is found that divergent model projections 31 

of changes in the incidence of rare heavy (> 60 mm/day) daily precipitation events 32 

explain much of the model disagreement on annual timescales, yet represent only 33 

0.3% of precipitating days and 9% of annual precipitation volume. Of the 25 34 

downscaled model projections we examine, 21 agree that precipitation frequency 35 

will decrease by the 2060s, with a mean reduction of 6-14 days/year. This reduces 36 

California’s mean annual precipitation by about 5.7%. Partly offsetting this, 16 of 37 

the 25 projections agree that daily precipitation intensity will increase, which 38 

accounts for a model average 5.3% increase in annual precipitation. Between 39 

these conflicting tendencies, 12 projections show drier annual conditions by the 40 

2060s and 13 show wetter. These results are obtained from sixteen global general 41 

circulation models downscaled with different combinations of dynamical methods 42 

(WRF, RSM, and RegCM3) and statistical methods (BCSD and BCCA), although 43 

not all downscaling methods were applied to each global model. Model 44 

disagreements in the projected change in occurrence of the heaviest precipitation 45 

days (> 60 mm/day) account for the majority of disagreement in the projected 46 

change in annual precipitation, and occur preferentially over the Sierra Nevada 47 

and Northern California. When such events are excluded, nearly twice as many 48 

projections show drier future conditions. 49 
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1. Introduction 50 

California has taken an aggressive approach to confronting human-induced 51 

climate change (e.g., Anderson et al. 2008, Franco et al. 2011). For example, state 52 

assembly bill 32 (AB 32) targets reducing greenhouse gas emissions to 1990 53 

levels by 2020. Actions are also being taken to adapt to the anticipated changes, 54 

such as taking sea level rise into account in coastal planning.  55 

While it is nearly certain that California’s climate will warm in future decades 56 

(e.g., Hayhoe et al. 2004; Leung et al. 2004; IPCC, 2007; Pierce et al. 2012),  57 

projections of annual precipitation change are proving more problematic. Model 58 

results diverge significantly, with a model-mean value near zero (e.g., Dettinger 59 

2005). Although a projection of no significant change is as valid as any other, it is 60 

worth exploring the origins of this disagreement. We approach the problem using 61 

a variety of global models and downscaling techniques to examine how changes in 62 

precipitation frequency and intensity on a daily timescale combine to produce the 63 

annual change.  64 

Changes in the frequency and intensity of precipitation events can have a 65 

profound impact. Precipitation frequency can affect crops, tourism, and outdoor 66 

recreation. More intense rainfall increases the chance of flooding and, lacking 67 

adequate reservoir storage, can mean that a larger proportion of total precipitation 68 

leaves the region through runoff, becoming unavailable for beneficial use. More 69 

intense rainfall and the transition from snow to rain may also reduce groundwater 70 

recharge in some locations (Dettinger and Earman, 2007).  71 
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Numerous studies have examined projected changes in California’s monthly or 72 

seasonal precipitation due to human-induced climate change, but only a few have 73 

examined daily precipitation intensity and frequency (Kim 2005; Hayhoe et al. 74 

2004; Leung et al. 2004). However, the physical processes causing changes in the 75 

frequency and intensity of daily precipitation have become better understood in 76 

recent years. Warmer air temperatures allow more water vapor in the atmosphere, 77 

providing a tendency towards more intense precipitation, although the actual 78 

processes controlling extremes depend on changes in temperature, upward 79 

velocity, and precipitation efficiency (O’Gorman and Schneider 2009; Muller et 80 

al. 2011). Evidence from energy and water balance constraints (Stephens and Hu 81 

2010) and global climate models (Meehl et al. 2005) indicates that climate 82 

warming will generally result in greater intensity precipitation events, though it is 83 

less clear how these changes will play out regionally. For example, in the region 84 

of interest here, the migration of storm tracks poleward implies a shift in 85 

precipitation frequency over the west coast of the U.S. (e.g., Yin 2005; Salathe 86 

2006; Ulbrich et al. 2008; Bender et al. 2012).  87 

In California some of the projected precipitation changes, particularly in daily 88 

extremes, are related to atmospheric rivers of water vapor that originate in the 89 

tropics or subtropics and are advected by winds into the west coast of North 90 

America (e.g., Ralph and Dettinger 2011). Changes in atmospheric rivers 91 

(Dettinger 2011) would be important because they generate many of California’s 92 

large floods, and play an key role in delivering the state’s water supply (Ralph and 93 

Dettinger 2011, 2012). 94 
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Global models can reproduce some large scale patterns of precipitation and its 95 

variability, but typically simulate light precipitation days too frequently and heavy 96 

precipitation days too weakly (Sun et al. 2006, Dai et al. 2006). This problem is 97 

resolution-dependent; Wehner et al. (2010) showed that intensity is captured 98 

better as model resolution increases from 2 to ~0.5 degree. Chen and Knutson 99 

(2008) emphasized the fundamental problems of comparing station precipitation 100 

observations, which are valid at a point, to climate model fields, which are 101 

averaged over a gridcell.  102 

Downscaling is often used to address the problem of global model resolution that 103 

is too coarse to simulate precipitation intensity accurately. Downscaling is 104 

especially needed given California’s coastal and interior mountain ranges, which 105 

affect precipitation yet are poorly resolved by global climate models. 106 

Downscaling can use either statistical methods, which are based on observed 107 

relationships between small-scale and large-scale processes, or dynamical 108 

methods, which use regional fine-scale climate or weather models driven by 109 

global climate models.  110 

Our first goal is to show how downscaled climate simulations project future 111 

changes in daily precipitation frequency and intensity over California, and how 112 

these combine to produce annual precipitation changes. Since our interest is in 113 

water supply issues, we focus on absolute changes using a single threshold for 114 

heavy precipitation events across the state, rather than on percentage changes in 115 

precipitation relative to the local climatology. (Other investigators might be more 116 

interested in the largest local fractional changes, for instance how they affect the 117 

local ecology.) This means that our analysis also ends up focusing on locations 118 
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where heavy precipitation occurs, which in California is the Sierra Nevada and 119 

northern part of the state. An analysis that finds heavy precipitation events are 120 

important is necessarily intertwined with the location where such events can 121 

happen, which is a function of how the regional meteorological setting (prevalent 122 

moisture-bearing wind patterns, for example) interacts with the local topography. 123 

The second goal is to compare how different statistical and dynamical 124 

downscaling methods produce changes in precipitation frequency and intensity. 125 

We use daily precipitation from two global models dynamically downscaled with 126 

three regional climate models, those two same global climate models along with 127 

two others statistically downscaled by a technique that preserves the daily 128 

sequence of global model precipitation, and those 4 global models along with 12 129 

more statistically downscaled with a technique that is widely used but does not 130 

preserve the daily sequence of precipitation.  131 

Due to the computational burden of dynamically downscaling with multiple 132 

regional models, we limit our analysis to two periods: the historical era (1985-133 

1994) and the 2060s. For the same reason we consider only the SRES A2 134 

emissions forcing scenario (Nakicenovic et al. 2000). The 2060s is about the last 135 

decade where the change in global air temperatures due to anthropogenic forcing 136 

is not well separated between different emissions scenarios (IPCC 2007). The 137 

same models were used in Pierce et al. (2012) to examine projected seasonal mean 138 

and 3-day maximum temperature and precipitation changes in California; this 139 

work extends that previous study by examining how changes in precipitation 140 

frequency and intensity on a daily timescale combine to produce overall 141 

precipitation changes. 142 
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2. Data and Methods 143 

The models and downscaling methods used in this work are the same as used in 144 

Pierce et al. (2012); we refer the reader to that work for a detailed description. All 145 

downscaling is to a ~12 km spatial resolution. In cases where more than one 146 

ensemble member was available for downscaling, we used ensemble number 1 147 

from the global model. 148 

 The global models and downscaling methods applied to each are listed in Table 1. 149 

Each combination of global model and downscaling technique will be referred to 150 

as a “model projection”. Dynamically downscaled results are obtained using three 151 

regional climate models (RCMs): 1) Version 3 of the Regional Climate Model 152 

(RegCM3), which is originally based upon the MM5 mesoscale model (Pal et al. 153 

2007). 2) The NCAR/NCEP/FSL Weather Research and Forecasting (WRF) 154 

model (Skamarock et al. 2008). 3) The Regional Spectral Model (RSM, 155 

Kanamitsu et al. 2005), which is a version of the National Centers for 156 

Environmental Prediction (NCEP) global spectral model optimized for regional 157 

applications. The ability of the regional models to reproduce observed climatology 158 

given historical reanalysis as forcing was examined in Miller et al. (2009), who 159 

concluded that while all the models have limitations, they do a credible job 160 

overall. In total, we examine five dynamically downscaled model projections. 161 

Two methods of statistical downscaling are used: 1) Bias Correction with 162 

Constructed Analogues (BCCA; Hidalgo et al. 2008; Maurer et al. 2010), which 163 

downscales fields by linearly combining the closest analogues in the historical 164 

record. 2) Bias Correction with Spatial Disaggregation (BCSD; Wood et al. 2002, 165 

2004), which generates daily data from monthly GCM output by selecting a 166 
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historical month and rescaling the daily precipitation to match the monthly value, 167 

and so does not preserve the original global model sequence of daily precipitation. 168 

The historical month chosen is conditioned on monthly precipitation amount, so 169 

the number of zero precipitation days can change as precipitation changes, but the 170 

precipitation intensity changes in BCSD are less directly connected to the GCM 171 

results than in the other methods. Maurer and Hidalgo (2008) compared results of 172 

using BCCA and BCSD, and concluded that they have comparable skill in 173 

producing downscaled monthly temperature and precipitation. In total, we analyze 174 

4 model projections with BCCA, and another 16 with BCSD. 175 

BCCA and BCSD downscale to the same 1/8° x 1/8° (~12 km) latitude-longitude 176 

grid used in the Hamlet and Lettenmaier (2005) observational data set. RegCM3, 177 

WRF, and RSM each have their own fine-scale grid of O(12 km) but are not 178 

coincident. For consistency and ease of comparison with observations, the 179 

dynamically downscaled fields were regridded to the same 1/8° x 1/8° latitude-180 

longitude grid used by the statistical methods and observations before analysis. 181 

Natural climate variability due to such phenomena as the El Nino/Southern 182 

Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) is not of direct 183 

interest here, so in order to minimize these effects we generally average our 184 

results over multiple model projections. Since different projections have different 185 

phases of ENSO, PDO, or other natural climate modes of variability, averaging 186 

across model projections tends to reduce the influence of natural variability on our 187 

results. 188 
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2.1 Bias correction 189 

Biases in downscaled precipitation fields can lead to inaccurate hydrological 190 

impacts, especially given the non-linear nature of runoff. Since the project’s 191 

purpose was to focus on hydrological and other applications, all the precipitation 192 

fields shown here are bias corrected (Panofsky and Brier 1968; Wood et al. 2002, 193 

2004; Maurer 2007; Maurer et al. 2010). Such biases can be created by the 194 

downscaling method, but often reflect biases in the original global model (e.g., 195 

Wood et al. 2004, Duffy et al. 2006, Liang et al. 2008). Details of the bias 196 

correction procedure are given in Pierce et al. (2012). 197 

3. Results 198 

3.1 Change in precipitation frequency 199 

Current GCMs over-predict the number of days with a small amount of 200 

precipitation (e.g., Sun et al. 2006, Dai 2006; Chen and Knutson, 2008; cf. 201 

Wehner et al. 2010). Typically this problem is addressed by defining a threshold 202 

below which a model is considered to have zero precipitation. For example, Leung 203 

et al. (2004) used 0.01 mm/day, Caldwell et al. (2009) used 0.1 mm/day, and Kim 204 

(2005) used 0.5 mm/day. Station observations have limited resolution too; in the 205 

global summary of day (GSOD) data set no values less than 0.25 mm/day are 206 

reported, while NOAA’s co-operative observing stations typically report no values 207 

less than 0.1 mm/day. We use a threshold of 0.1 mm/day below which model 208 

precipitation values are taken to be zero.  209 
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Figure 1 shows the climatological frequency (days/year) of days with precipitation 210 

less than 0.1 mm/day, hereafter referred to as “zero precipitation days”. Panel a) is 211 

the mean across all model simulations for the historical period, and panel b) is 212 

from the Hamlet and Lettenmaier (2005) observations over the period 1970-99. 213 

The two fields are similar, but all model fields are bias corrected (Pierce et al. 214 

2012), which reduces the disagreement between models and observations. It 215 

makes little sense to reformulate a non-bias corrected version of BCSD or BCCA, 216 

but the dynamical downscaling methods apply bias correction after the 217 

simulations are performed. Panels c) and d) of Figure 1 show the number of zero 218 

precipitation days from the dynamically downscaled models with and without bias 219 

correction, respectively. With bias correction the number of zero-precipitation 220 

days matches observations much better than before bias correction, even though 221 

the precipitation rate is bias corrected rather than the number of zero precipitation 222 

days. The non-bias corrected fields have too few zero precipitation days. Besides 223 

the propensity for models to simulate too many light precipitation days, this 224 

reflects the tendency of dynamic downscaling in this region to produce more 225 

precipitation than observed (Miller et al., 2009). Panel e) shows histograms of 226 

percentage of gridpoints in the domain that experience the indicated rate of zero-227 

precipitation days/year. The non-bias corrected histogram (green triangles) is a 228 

poor representation of the observed distribution (red circles). Bias correction 229 

improves this substantially (purple crosses), although differences in the 230 

distributions are still evident, particularly around 220 and 270 days/year.  231 

Figure 2 shows the change (future minus historical) in annual precipitation 232 

amount and frequency of zero-precipitation days along with the empirical 233 

cumulative distribution function (CDF) of these quantities. All values are 234 
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averaged across model projections. The number of zero-precipitation days 235 

increases by 6-14 days per year over most of the domain, especially Northern 236 

California and the Sierra Nevada, which is an increase of 3-6% (Figure 2e). Yet 237 

model-mean precipitation in this region increases slightly, which implies that 238 

precipitation intensity has increased. Similarly, the southern coastal regions show 239 

pronounced drying, but do not show the largest increase in zero-precipitation 240 

days. Overall, 73% of the gridcells experience decreasing precipitation, and the 241 

median change in number of zero-precipitation days is 8 days/year (about a 3% 242 

increase). 243 

The effect of each downscaling technique on the change in number of zero 244 

precipitation days is shown in Figure 3, illustrated for the two global models that 245 

were downscaled with the most techniques (CCSM3 and GFDL CM2.1). The 246 

original global model field is shown in the leftmost column for comparison. 247 

BCSD tends to show the least increase in zero-precipitation days while BCCA 248 

tends to show the most, although the differences are small. The decreasing number 249 

of zero-precipitation days in the interior southeast with RSM downscaling is 250 

associated with a more active North American monsoon. As discussed in Pierce et 251 

al. (2012), this is primarily a summer response that is seen more clearly with 252 

dynamical downscaling than statistical downscaling, and is relatively more 253 

influenced by the individual dynamic downscaling model being used then by the 254 

global GCM being downscaled. This suggests that the details of the projected 255 

summer monsoonal changes are sensitive to the cloud and precipitation 256 

parameterizations used in the regional dynamical models. 257 
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3.2 Effect of downscaling on daily precipitation intensity 258 

Figure 4 shows the way different downscaling techniques alter the global model’s 259 

daily precipitation intensity. The colored maps show the ratio of downscaled 260 

precipitation rate in a gridcell to the global model’s precipitation rate on the same 261 

day and interpolated to the same gridcell, averaged over days with precipitation. 262 

We term this the “amplification factor.” The line plots show histograms of the 263 

amplification factor across all gridcells for each downscaling technique. BCSD 264 

results are excluded since they do not preserve the daily sequence of GCM 265 

precipitation. Results are broken out by low, medium, and high tercile of the 266 

original global model precipitation intensity in the gridcell.  267 

The amplification factor varies spatially and non-linearly with the magnitude of 268 

the GCM’s precipitation.  Each dynamical downscaling method changes the 269 

global model precipitation signal in a characteristic way, though all amplify the 270 

global model’s precipitation rate in the lowest tercile. In the Sierra Nevada and the 271 

northern coastal mountains, dynamic downscaling amplifies precipitation rates in 272 

the low tercile by 4 or more compared to the original GCM. In the medium and 273 

high terciles the dynamically downscaled simulations exhibit successively greater 274 

fractional precipitation rate reductions in rain shadow regions with respect to the 275 

original GCMs. In such locations the GCMs typically produce unrealistically 276 

heavy precipitation due to adequately resolved topography. 277 

The amplification factors of the three dynamical methods are similar to each 278 

other, and all differ from the BCCA statistical method, a feature particularly 279 

evident in the histograms. BCCA has a more linear relationship between global 280 

and downscaled precipitation intensity, especially in mountainous terrain such as 281 
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the Sierra Nevada and coastal range, where non-linearities in the dynamical 282 

methods are pronounced.  283 

The largest non-linearities in BCCA’s amplification factor are in the rain shadow 284 

regions. The real world shows this behavior as well; an analysis of the Hamlet and 285 

Lettenmaier (2005) data shows that as regional averaged precipitation increases, 286 

the contrast between precipitation in the mountains and precipitation in the rain 287 

shadow increases as well (not shown). BCCA, being based on observations, 288 

mimics this behavior. 289 

3.3 Future change in daily precipitation intensity 290 

Figure 5 shows the change (future minus historical) in the fraction of precipitating 291 

days that have precipitation of the indicated intensity (mm/day), averaged across 292 

all model projections. In most locations the fractional occurrence of amounts less 293 

than 10 mm/day decreases. However this is compensated for by a greater 294 

occurrence of days with 20 mm/day or more. Over much of the dry interior, values 295 

greater than 100% indicate that when considering only days with precipitation, the 296 

rate of days with heavy precipitation more than doubles. Elsewhere, such days 297 

typically increase by 25-50%. 298 

Figure 2 showed that the number of days with precipitation generally declines, so 299 

the increase in fraction of precipitating days with heavy precipitation does not 300 

necessarily mean that the actual number of days per year with heavy precipitation 301 

increases. (I.e., if it rains half as often, but the fraction of rainy days that have 302 

heavy rain doubles, then the number of heavy rain days per year is unchanged.) To 303 

clarify this, Figure 6 shows the change in precipitation intensity expressed as the 304 
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change (future minus historical) in number of days per year, averaged across 305 

model projections. Over most of California, especially the Sierra Nevada and 306 

North Coast regions (which experience most of California’s precipitation) the 307 

number of days with 0.1 to 20 mm/day of precipitation decreases, while days with 308 

60 mm/day or more increase. Because heavy precipitation days are rare the 309 

increase in number of days per year is low. In all classes of precipitation intensity, 310 

Southern California experiences the least changes (Figure 6, right panel), while 311 

Nevada experiences the greatest decrease in light precipitation days and Northern 312 

California experiences the greatest increase in heavy precipitation days. 313 

The effect of downscaling technique on changes in precipitation intensity is 314 

shown in Figure 7. For brevity, only changes in the lowest (0.1-5 mm/day) and 315 

highest (60+ mm/day) intensity bins from Figure 6 are shown. The downscaled 316 

change in California’s average annual precipitation computed by each method is 317 

given in the panel title, for reference. Away from the summer monsoon region, the 318 

different downscaling techniques consistently simulate fewer light precipitation 319 

days in both global models. However results for the strongest precipitation 320 

intensities are not consistent, either across different downscaling techniques or for 321 

different global models across a single downscaling technique. This suggests that 322 

inconsistencies in the way changes in heavy precipitation events are simulated 323 

could be an important source of model disagreement on future precipitation 324 

changes, a point explored further below. For GFDL, the different downscaling 325 

methods produce annual mean changes of −16.6 to −2.3%; for CCSM3, the range 326 

is −17.9 to 8.7%. Therefore, we see that even given the same global model data as 327 

input, downscaling can produce a wide range of net annual precipitation changes.  328 
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3.4 The combined effect of frequency and intensity 329 

The projected change in California’s annual mean precipitation shows little 330 

agreement across models (e.g., Dettinger 2005). Yet our results indicate that 331 

models agree that precipitation frequency will decrease and (to a lesser extent) 332 

daily intensity will increase. Since the annual precipitation amount is determined 333 

by the frequency and intensity of precipitation events, is this a contradiction? 334 

To sensibly compare the effects of changes in frequency and intensity on annual 335 

precipitation requires expressing quantities in the same units. We linearize the 336 

problem by assuming that that loss of a precipitating day in the future decreases 337 

the total annual precipitation by an amount equal to the average rainy-day 338 

precipitation in that day’s month during the historical period. (The day’s month is 339 

used because, for example, loss of a July precipitating day typically has less effect 340 

on the annual average than loss of a February precipitating day.) The effects of 341 

changes in precipitation intensity are then calculated as the actual change in 342 

precipitation minus the contribution due to the change in number of precipitating 343 

days.  344 

Figure 8 shows the effect of the change in California-averaged precipitation 345 

frequency (panel a) and intensity (panel b) on total annual precipitation (panel c). 346 

Of the 25 model projections, 21 show a negative tendency in annual precipitation 347 

due to fewer days with precipitation, with a mean decline of 32 mm/year (5.7% of 348 

the annual total precipitation of 557 mm). Sixteen model projections show greater 349 

precipitation intensity, which accounts for an increase of 29 mm/year (5.3%) in 350 

the annual total. When these competing tendencies are added together the results 351 

are distributed around zero, with 12 models showing drier future conditions and 352 
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13 showing wetter. Although the small sample of BCCA results prevents 353 

definitive conclusions, Figure 8b suggests that BCCA may produce less increase 354 

in precipitation intensity than other methods.  (This is consistent with Figure 7 for 355 

the CCSM3 model, but not for GFDL.) 356 

The inference from Figure 7 was that model disagreement between projected 357 

changes in California’s annual precipitation may arise from the relatively few 358 

precipitation events > 60 mm/day. This can be tested by computing the change in 359 

annual precipitation only including gridcells and days (“gridcell-days”) when the 360 

gridcell’s daily precipitation is less than some cutoff value. Results are shown in 361 

Figure 9, with the precipitation cutoff increasing from 5 to 60 mm/day. At the 362 

lower cutoffs, the models overwhelmingly agree on the sign of the annual change. 363 

Even when all gridcell-days with precipitation less than 60 mm/day are included 364 

(99.7% of all possible gridcell-days), almost 1.8 times as many models show a 365 

precipitation decrease as an increase. Only when the final 0.3% of gridcell-days 366 

with heaviest precipitation are included do the models disagree, with half showing 367 

an annual precipitation increase and half showing a decrease. These events occur 368 

only rarely, but have a strong influence on the annual precipitation change. 369 

Precipitation events > 60 mm/day occur preferentially in the Sierra Nevada and 370 

Northern Coastal regions (Figure 10; cf. Ralph and Dettinger 2012). On average, 371 

they occur about 1 in every 50-200 days in the Northern Coastal and Sierra 372 

Nevada regions. When considering precipitating days only (Figure 10b), such 373 

events are about 1 in every 10-50 precipitating days in the North Coast, Sierra 374 

Nevada, and Los Angeles coastal mountain regions. The Hamlet and Lettenmaier 375 

(2005) data set indicates that typically about 9% of California’s total annual 376 
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precipitation volume falls during such days. The cumulative distribution functions 377 

(Figure 10c) indicate that as the relationship between the occurrence rate 378 

(expressed as a 1-in-N days rate) and the fraction of gridcells experiencing that 379 

occurrence rate or higher is approximately exponential. In other words, high 380 

occurrence rates (small N) are concentrated in a small region, and the occurrence 381 

rate drops dramatically as more grid cells are considered. 382 

3.5 Changes in precipitation frequency and intensity over the year 383 

Most of California’s precipitation falls during the cool months (October through 384 

April). Figure 11 shows the change in precipitation by month (top row), change in 385 

the number of days with non-zero precipitation (middle row), and 50th and 95th 386 

percentiles of precipitation on days with non-zero precipitation (bottom row). 387 

Values are averaged over four representative climate regions identified by 388 

Abatzoglou et al. (2009; Figure 12), which are based on the covariance of 389 

anomalous precipitation and temperature over the state. Only BCCA and 390 

dynamically downscaled data have been used in this analysis, since those preserve 391 

the daily sequence of precipitation from the original global models. (In a 392 

sensitivity test we recomputed this figure using BCSD data, and found little 393 

difference except in summer in the North American monsoon region, where 394 

BCSD does not show the pronounced tendency towards wetter conditions.) Figure 395 

2 showed that zero precipitation days increase over most of the domain, but Figure 396 

11 shows this does not happen uniformly over the year. Virtually the entire state 397 

has a statistically significant drop in spring precipitation (Figure 11, top row), 398 

particularly in April. This is accompanied by a decrease in precipitating days 399 

(Figure 11, middle row), although this decrease is not always statistically 400 
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significant. This pattern is repeated, although more weakly, in the autumn: most 401 

regions show decreasing precipitation associated with fewer precipitating days.  402 

Most of the regions, with the exception of the Anza-Borrego, show a tendency 403 

towards increasing 95th percentile precipitation during some or all of the cool 404 

season months (Nov-Mar; bottom row of Figure 11). Winter average precipitation 405 

increases despite fewer precipitating days because precipitation events intensify. 406 

Although this result is obtained with data pooled across the BCCA and dynamical 407 

downscaling techniques, the models do not all agree on this result. Of the four 408 

global models (CCSM3, GFDL 2.1, PCM1, and CNRM CM3), CCSM3 shows the 409 

strongest increase in winter precipitation intensity. GFDL 2.1 and PCM1 show 410 

weaker increases in intensity along the coast and decreases in the far Northeast, 411 

while CNRM shows mild decreases in storm intensity (and winter decreases in 412 

precipitation of 8-45%, mostly due to fewer days with precipitation) throughout 413 

the state. 414 

The Anza-Borrego (Figure 11) and Inland Empire regions (not shown), which are 415 

affected by the North American monsoon, experience an increase in summer (JJA) 416 

precipitation that is associated with an increase in both precipitation frequency 417 

and intensity. Because of the spread of responses across the models, these changes 418 

are not statistically significant. CCSM3 and GFDL show these increases strongly, 419 

while CNRM shows only a weak increase and PCM shows a slight decrease. 420 
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3.6 Summary of changes in California precipitation frequency and 421 

intensity 422 

The overall effect of seasonal changes in daily precipitation intensity and 423 

frequency is shown in Figure 13. Equivalent changes in seasonal precipitation 424 

(cm) are calculated as in section 3.4 (so that all values have the same units), and 425 

results averaged across all model projections. Each region's change in future 426 

precipitation is equal to the sum of changes due to the number of precipitating 427 

days and changes due to precipitation intensity. 428 

In winter and spring almost all locations show an increase in daily precipitation 429 

intensity, except for the southern part of the state in winter. At the same time, 430 

almost all locations and seasons show a decrease in the number of precipitating 431 

days, except for summer, where there are few precipitating days in California to 432 

begin with. The exception is the southeastern part of the state in summer, which 433 

shows more precipitating days. The way the opposing tendencies of precipitation 434 

frequency and intensity combine yields a complex pattern of seasonal 435 

precipitation changes. In the northern part of the state in winter, the increase in 436 

storm intensity is stronger than the decrease in number of precipitating days, 437 

resulting in an overall mild (3-6%) increase in seasonal precipitation. In spring 438 

(MAM) a mild increase in daily precipitation intensity coupled with a strong 439 

decrease in number of precipitating days yields a significant tendency towards less 440 

precipitation (declines of > 10%). This can also be seen in autumn (SON), 441 

although the changes in storm intensity are small in this season. Finally, the 442 

southeastern part of California, on the edge of the region affected by the North 443 

American monsoon, shows both a mild increase in storm intensity and strong 444 
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increase in number of precipitating days in summer (JJA), resulting in large (> 445 

100%) increases in that season's precipitation. 446 

4. Summary and Conclusions 447 

This work has evaluated future changes in daily precipitation intensity and 448 

frequency in California between the historical period 1985-1994 and the 2060s. 449 

Our goal is to see how model disagreements in projected annual precipitation 450 

changes are expressed at the daily timescale. 451 

We used data from 16 global climate models (GCMs) downscaled with a 452 

combination of statistical (BCCA and BCSD) and dynamical (WRF, RCM, and 453 

RegCM3) techniques, although not all downscaling techniques were applied to 454 

each global model. We analyzed 25 model projections in total, where a model 455 

projection is a unique combination of global model and downscaling technique. 456 

We used the SRES A2 greenhouse gas and anthropogenic aerosols emissions 457 

scenario, and equally weighted all model projections, since there is currently no 458 

basis in the published literature for weighting different downscaling techniques 459 

differently. 460 

Our interest here is in water supply issues, so we focus on changes in total 461 

statewide precipitation rather than fractional changes relative to the local 462 

climatology. Twelve models project less annual precipitation and 13 project more. 463 

The root of these differences is the way each model combines changes in 464 

precipitation frequency and daily precipitation intensity. 465 

The model projections agree that substantial portions of California, particularly in 466 

the Sierra Nevada and North Coastal regions (which receive the majority of the 467 
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state’s precipitation) will have 6-14 fewer precipitating days/year. Over the 468 

northern half of the state, this represents a decline of about 8-15%. Twenty-one of 469 

the 25 projections agree on the sign of this decline.  470 

Most of the model projections also agree that daily precipitation intensity will 471 

increase. Expressed as a fraction of the number of days that experience 472 

precipitation, the incidence of days with precipitation greater than 20 mm/day 473 

increases by 25-100% over almost the entire domain considered here. Expressed 474 

as an incidence rate over all days of the year (not just precipitating days), 475 

precipitation rates below 10 mm/day decrease over nearly all of California, while 476 

most models project an increase in events of 60 mm/day or more over the Sierra 477 

Nevada and Northern Coastal regions. This has implications for flood 478 

management (Das et al. 2011), particularly as winter precipitation transitions from 479 

rain to snow (e.g., Knowles 2006) and the snow melts earlier in the year (e.g., 480 

Kim 2005, Hayhoe 2004, Das et al. 2009). Heavier precipitation could also 481 

increase the fraction of precipitation that generates surface runoff, reducing 482 

groundwater recharge (Dettinger and Earman, 2007). 483 

Where the models disagree is whether the increase in precipitation intensity is 484 

sufficient to overcome the drying effects of fewer precipitating days. This 485 

disagreement arises largely from differences in the change in occurrence of events 486 

with precipitation > 60 mm/day. The largest absolute (i.e., not fractional) changes 487 

in such heavy precipitation events occur preferentially in the Sierra Nevada and 488 

northern California. The importance of changes in the incidence of heavy 489 

precipitation events is thus tied to the importance of locations where such events 490 

are relatively common. When such events are excluded, 1.8 times as many model 491 
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projections show declining annual precipitation in California as increasing. When 492 

they are included, the model projections are about split between drier and wetter 493 

future conditions. The change in incidence of these heavy precipitation events 494 

depends on both the global model and downscaling technique. 495 

Events of this magnitude are rare, constituting only about 9% of annual 496 

precipitation volume and 1 in every 10-50 precipitation events in the Sierra 497 

Nevada, Northern Coastal, and California coastal ranges, and are almost unknown 498 

elsewhere. This implies that efforts to narrow the range of future precipitation 499 

projections over California need to focus on the models’ representation of the 500 

rarest, heaviest precipitation events, how such events might be enabled by the 501 

interaction of the regional meteorological setting with local topography, and the 502 

fidelity of the models’ atmospheric rivers (Zhu and Newell 1998). Atmospheric 503 

rivers play a key role in heavy-precipitation over many parts of the world (e.g., 504 

Lavers et al. 2011; Neiman et al. 2011; Dettinger et al. 2011; Viale and Nuñez 505 

2011; Krichak et al. 2012), so our results could apply to other regions as well.  506 

Winter precipitation increases in the northern part of the state are driven by 507 

significant increases in daily precipitation intensity with only mild decreases in 508 

the number of precipitating days, while spring and autumn decreases in 509 

precipitation are driven by fewer precipitating days with only mild increases in 510 

precipitation intensity. The change in number of precipitating days may be related 511 

to the poleward movement of the storm tracks expected under human-induced 512 

climate change (e.g., Yin 2005; Salathe 2006; Ulbrich et al. 2008; Bender et al. 513 

2012). In the southern part of the state, although many simulations exhibit 514 

moderate increases in winter precipitation intensity, these increases are offset and 515 
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in several cases overwhelmed by decreases in the number of precipitating days. 516 

Overall, the water supply effects of the tendency of the snowpack to melt earlier 517 

in spring will be exacerbated by a decrease in spring precipitation. A similar 518 

finding for the headwaters of the Colorado River was obtained by Christensen and 519 

Lettenmaier (2007). 520 

The dynamical downscaling techniques (WRF, RSM, and RegCM3) produced a 521 

non-linear amplification of the global precipitation rate, with smaller rates of 522 

global precipitation amplified the most. If this leads the dynamical techniques to 523 

keep the soil more saturated than when BCCA downscaling is used, it could affect 524 

the runoff efficiency (fraction of precipitation that generates runoff) that is 525 

simulated when using different downscaling techniques. This could be usefully 526 

explored in future work.  527 

Finally, we note that projected future changes in California’s annual precipitation 528 

are generally small compared to either natural interannual climate variability or 529 

the spread between different model projections (e.g., Dettinger 2005, Pierce et al. 530 

2012). These results show that divergent model estimates of future annual 531 

precipitation may be composed of individual seasonal changes in daily 532 

precipitation intensity and frequency that have a specific geographical setting and 533 

are much more consistent across models. Future attempts to examine whether 534 

human-induced climate change is measurably affecting California’s precipitation 535 

might find identifiable changes in these other aspects of the precipitation field 536 

long before the net annual change becomes evident. 537 
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Table legends 702 

Table 1. The global general circulation models (GCMs) used in this project, their 703 

originating institution, and whether they were downscaled by the indicated 704 

method. BCSD: bias correction with spatial disaggregation; BCCA: bias 705 

correction with constructed analogues; WRF: weather research forecast model; 706 

RSM: regional spectral model; RegCM3: Regional climate model version 3.  707 

 708 



34 

Figure legends 709 

Figure 1. Climatological number of zero-precipitation days per year from: a) All 710 

model runs over the historical period; b) Observations, 1970-99; c) Only the 711 

dynamically downscaled runs over the historical period, with bias correction; d) 712 

Only the dynamically downscaled runs, without bias correction. Color scale is 713 

along the bottom. Panel e: histogram showing the frequency of occurrence 714 

(expressed as the percent of gridcells) experiencing the indicated number of zero-715 

precipitation days per year. 716 

Figure 2. Panel a: Change (future era minus historical) in annual precipitation 717 

(percent). b) Empirical cumulative distribution function (CDF) of the precipitation 718 

changes; 73% of the gridcells experience decreasing precipitation. c) Change in 719 

number of zero precipitation days per year. d) CDF of changes in number of zero-720 

precipitation days per year; the median value is about 8 days/year. e) As panel c, 721 

but in percent. f) As panel d, but in percent. All values are averaged across all 722 

downscaling methods and models. 723 

Figure 3. Change in the number of zero-precipitation days (days/year), future era 724 

minus historical, as a function of global model (labels on the left) and 725 

downscaling technique. 726 

Figure 4. Colored maps: the mean ratio of downscaled to global model daily 727 

precipitation, computed on days with precipitation (the “amplification factor”). 728 

Rows correspond to the downscaling method; WRF, RSM, and RegCM3 are 729 

dynamical methods, while BCCA is a statistical method. When the downscaling 730 

method was applied to more than one global model, the mean across global 731 
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models is shown. Columns correspond to terciles of the global precipitation 732 

amount in each gridcell for the day being downscaled. The color scale for the 733 

maps is along the right hand side. Line plots: histograms of the amplification 734 

factor for the different downscaling methods taken across all gridcells, for the 735 

indicated tercile of global precipitation amount. 736 

Figure 5. Change (future minus historical era) in the incidence of the indicated 737 

precipitation rate, averaged across all model projections. Values are expressed as a 738 

function of the percent of precipitating days. I.e., a value of 100% indicates that 739 

twice as many precipitating days have the indicted rate. 740 

Figure 6. Left panels: change (days/year) in incidence of indicated precipitation 741 

intensity, future minus historical era. Right panel: the regional average of the data 742 

in the left panels, as a function of precipitation intensity. The dividing latitude 743 

between Northern and Southern California is taken as 36°N. 744 

Figure 7. The effect of different downscaling techniques on changes (number of 745 

days/year) in precipitation intensity in the lowest and highest bins from Figure 6 746 

(0.1 to 5 mm/day, and 60+ mm/day, respectively). The upper set of panels shows 747 

results from the GFDL CM2.1 global model; the lower set shows results from the 748 

CCSM3 global model. The mean change (future – historical era) in California 749 

annual precipitation obtained by each downscaling method is noted in the title. 750 

Figure 8. Change in California’s annual mean precipitation (mm) due to the 751 

change in the number of zero precipitation days (left) and precipitation intensity 752 

(middle). Right: the total annual mean change, which is equal to the sum of the 753 

components shown in panels a and b. Model projection number is along the x axis. 754 
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Results using BCCA, BCSD, and dynamical downscaling are crosshatched, solid, 755 

and stippled, respectively. 756 

Figure 9. Change in California’s annual precipitation across model projections (x 757 

axis) when only days with less than the indicated precipitation rate (mm/day) are 758 

included. The percentage in the title shows the fraction of gridcell-days included 759 

for indicated cutoff. Results using BCCA, BCSD, and dynamical downscaling are 760 

crosshatched, solid, and stippled, respectively. 761 

Figure 10. Mean model occurrence rate (expressed as 1-in-N days) of precipitation 762 

events with > 60 mm/day. a) When considering all days. b) When considering 763 

only days with precipitation. Grey areas experienced no 60 mm/day events. c) 764 

Empirical cumulative distribution function (CDF) of the values of N across all 765 

gridpoints that experienced an event with > 60 mm/day precipitation. 766 

Figure 11. Changes in precipitation intensity vs. frequency over the annual cycle 767 

in 4 regions. Top row: Annual cycle of monthly precipitation (mm/day), for the 768 

historical (blue) and future (red) eras. The change in yearly precipitation (%) is in 769 

the title. At each month, a box is drawn between the historical and future values; 770 

the box is shaded green if the future value is wetter, and brown if it is drier. The 771 

box has a heavy outline if the difference is statistically significant at the 95% 772 

level, a normal outline if significant at the 90% level, and a light grey outline if 773 

not statistically significant. Black dots show individual model values. Middle row: 774 

Change in number of days with non-zero precipitation ("rainy days"); yellow 775 

boxes show a decrease in rainy days, while grey boxes show an increase. Bottom 776 

row: The 50th (solid line) and 95th (dashed line) percentiles of precipitation, 777 

calculated only on days when precipitation occurred, for the historical (blue) and 778 
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future (red) eras. The Y axis uses a square root transformation to cover the wide 779 

range of values. Data from the dynamical and BCCA downscaling methods was 780 

used to make the figure. 781 

Figure 12. California climate regions identified by Abatzoglou et al. (2009). The 782 

sub-panels in Figure 13 are plotted in accordance with the locations shown here. 783 

Figure 13. Apportioning the seasonal precipitation change in each region to 784 

changes in storm frequency and intensity. In each set of three bars, the left most 785 

(marked "P") shows the change in precipitation during that season (cm). (For 786 

comparison, the change in seasonal precipitation is shown at the bottom of each 787 

subpanel, in percent.) This bar is colored green for positive (wetter future) 788 

changes, and brown for negative (drier future) changes. The middle bar (“Z") 789 

shows the change in seasonal precipitation (cm) that arises due to the change in 790 

number of zero-precipitation days. Yellow indicates an increase in zero-791 

precipitation days, and grey indicates a decrease. The rightmost bar (marked "I") 792 

shows the change in seasonal precipitation (cm) that arises from the change in 793 

precipitation intensity. Red shows an increasing intensity, blue shows decreasing 794 

intensity. Note that the Y axis varies by region, but for each region is the same 795 

across all seasons. Sub-panel locations are illustrated in Figure 12. 796 
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Table 1 797 

GCM Institution BCSD BCCA WRF RSM RegCM3 

BCCR 
BCM 2.0 

Bjerknes Centre Clim. 
Res., Bergen, Norway 

Y     

CCCMA 
CGCM3.1 

Canadian Centre, 
Victoria, B.C., Canada 

Y     

CNRM 
CM3 

Meteo-France, Toulouse, 
France 

Y Y    

CSIRO 
MK3.0 

CSIRO Atmos. Res., 
Melbourne, Australia 

Y     

GFDL 
CM2.0 

Geophys. Fluid Dyn. Lab, 
Princeton, NJ, USA 

Y     

GFDL 
CM2.1 

Geophys. Fluid Dyn. Lab, 
Princeton, NJ, USA 

Y Y Y Y Y 

GISS e_r NASA/Goddard Inst. 
Space Studies, N.Y., USA 

Y     

INMCM 
3.0 

Inst. Num. Mathematics, 
Moscow, Russia 

Y     

IPSL CM4 Inst. Pierre Simon 
Laplace, Paris, France 

Y     

MIROC 3.2 
medres 

Center Climate Sys. Res., 
Tokyo, Japan 

Y     

MIUB 
ECHO-G 

Meteor. Inst. U. Bonn, 
Bonn, Germany 

Y     

MPI-
ECHAM5 

Max Planck Inst. Meteor., 
Hamburg, Germany 

Y     

MRI 
CGCM2.3.2 

Meteor. Res. Inst., 
Tsukuba, Ibaraki, Japan 

Y     

NCAR 
CCSM3 

Nat. Center Atmos. Res., 
Boulder, CO, USA 

Y Y Y Y  

NCAR 
PCM1 

Nat. Center Atmos. Res., 
Boulder, CO, USA 

Y Y    

UKMO 
HadCM3 

UK Met Office, Exeter, 
Devon, UK 

Y     

 798 

Table 1. The global general circulation models (GCMs) used in this project, their 799 

originating institution, and whether they were downscaled by the indicated 800 

method. BCSD: bias correction with spatial disaggregation; BCCA: bias 801 

correction with constructed analogues; WRF: weather research forecast model; 802 

RSM: regional spectral model; RegCM3: Regional climate model version 3.  803 
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 804 

Figure 1. Climatological number of zero-precipitation days per year from: a) All 805 

model runs over the historical period; b) Observations, 1970-99; c) Only the 806 

dynamically downscaled runs over the historical period, with bias correction; d) 807 

Only the dynamically downscaled runs, without bias correction. Color scale is 808 

along the bottom. Panel e: histogram showing the frequency of occurrence 809 

(expressed as the percent of gridcells) experiencing the indicated number of zero-810 

precipitation days per year. 811 
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 812 

Figure 2. Panel a: Change (future era minus historical) in annual precipitation 813 

(percent). b) Empirical cumulative distribution function (CDF) of the precipitation 814 

changes; 73% of the gridcells experience decreasing precipitation. c) Change in 815 

number of zero precipitation days per year. d) CDF of changes in number of zero-816 

precipitation days per year; the median value is about 8 days/year. e) As panel c, 817 

but in percent. f) As panel d, but in percent. All values are averaged across all 818 

downscaling methods and models. 819 
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 820 

Figure 3. Change in the number of zero-precipitation days (days/year), future era 821 

minus historical, as a function of global model (labels on the left) and 822 

downscaling technique.  823 
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 824 

Figure 4. Colored maps: the mean ratio of downscaled to global model daily 825 

precipitation, computed on days with precipitation (the “amplification factor”). 826 

Rows correspond to the downscaling method; WRF, RSM, and RegCM3 are 827 

dynamical methods, while BCCA is a statistical method. When the downscaling 828 
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method was applied to more than one global model, the mean across global 829 

models is shown. Columns correspond to terciles of the global precipitation 830 

amount in each gridcell for the day being downscaled. The color scale for the 831 

maps is along the right hand side. Line plots: histograms of the amplification 832 

factor for the different downscaling methods taken across all gridcells, for the 833 

indicated tercile of global precipitation amount. 834 
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 835 

Figure 5. Change (future minus historical era) in the incidence of the indicated 836 

precipitation rate, averaged across all model projections. Values are expressed as a 837 

function of the percent of precipitating days. I.e., a value of 100% indicates that 838 

twice as many precipitating days have the indicted rate. 839 
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 840 

Figure 6. Left panels: change (days/year) in incidence of indicated precipitation 841 

intensity, future minus historical era. Right panel: the regional average of the data 842 

in the left panels, as a function of precipitation intensity. The dividing latitude 843 

between Northern and Southern California is taken as 36°N. 844 
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 845 

Figure 7. The effect of different downscaling techniques on changes (number of 846 

days/year) in precipitation intensity in the lowest and highest bins from Figure 6 847 

(0.1 to 5 mm/day, and 60+ mm/day, respectively). The upper set of panels shows 848 

results from the GFDL CM2.1 global model; the lower set shows results from the 849 

CCSM3 global model. The mean change (future – historical era) in California 850 

annual precipitation obtained by each downscaling method is noted in the title. 851 
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 852 

 853 

Figure 8. Change in California’s annual mean precipitation (mm) due to the 854 

change in the number of zero precipitation days (left) and precipitation intensity 855 

(middle). Right: the total annual mean change, which is equal to the sum of the 856 

components shown in panels a and b. Model projection number is along the x axis. 857 

Results using BCCA, BCSD, and dynamical downscaling are crosshatched, solid, 858 

and stippled, respectively. 859 
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 860 

Figure 9. Change in California’s annual precipitation across model projections (x 861 

axis) when only days with less than the indicated precipitation rate (mm/day) are 862 

included. The percentage in the title shows the fraction of gridcell-days included 863 

for indicated cutoff. Results using BCCA, BCSD, and dynamical downscaling are 864 

crosshatched, solid, and stippled, respectively. 865 
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 866 

Figure 10. Mean model occurrence rate (expressed as 1-in-N days) of precipitation 867 

events with > 60 mm/day. a) When considering all days. b) When considering 868 

only days with precipitation. Grey areas experienced no 60 mm/day events. c) 869 

Empirical cumulative distribution function (CDF) of the values of N across all 870 

gridpoints that experienced an event with > 60 mm/day precipitation. 871 
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 872 

Figure 11. Changes in precipitation intensity vs. frequency over the annual cycle 873 

in 4 regions. Top row: Annual cycle of monthly precipitation (mm/day), for the 874 

historical (blue) and future (red) eras. The change in yearly precipitation (%) is in 875 

the title. At each month, a box is drawn between the historical and future values; 876 

the box is shaded green if the future value is wetter, and brown if it is drier. The 877 

box has a heavy outline if the difference is statistically significant at the 95% 878 

level, a normal outline if significant at the 90% level, and a light grey outline if 879 

not statistically significant. Black dots show individual model values. Middle row: 880 

Change in number of days with non-zero precipitation ("rainy days"); yellow 881 

boxes show a decrease in rainy days, while grey boxes show an increase. Bottom 882 

row: The 50th (solid line) and 95th (dashed line) percentiles of precipitation, 883 

calculated only on days when precipitation occurred, for the historical (blue) and 884 

future (red) eras. The Y axis uses a square root transformation to cover the wide 885 
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range of values. Data from the dynamical and BCCA downscaling methods was 886 

used to make the figure. 887 
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 888 

Figure 12. California climate regions identified by Abatzoglou et al. (2009). The 889 

sub-panels in Figure 13 are plotted in accordance with the locations shown here. 890 
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 891 

Figure 13. Apportioning the seasonal precipitation change in each region to 892 

changes in storm frequency and intensity. In each set of three bars, the left most 893 

(marked "P") shows the change in precipitation during that season (cm). (For 894 

comparison, the change in seasonal precipitation is shown at the bottom of each 895 

subpanel, in percent.) This bar is colored green for positive (wetter future) 896 

changes, and brown for negative (drier future) changes. The middle bar (“Z") 897 

shows the change in seasonal precipitation (cm) that arises due to the change in 898 

number of zero-precipitation days. Yellow indicates an increase in zero-899 

precipitation days, and grey indicates a decrease. The rightmost bar (marked "I") 900 
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shows the change in seasonal precipitation (cm) that arises from the change in 901 

precipitation intensity. Red shows an increasing intensity, blue shows decreasing 902 

intensity. Note that the Y axis varies by region, but for each region is the same 903 

across all seasons. Sub-panel locations are illustrated in Figure 12. 904 


