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ABSTRACT

Climate model simulations disagree on whether &frecipitation will increase
or decrease over California, which has impededsfto anticipate and adapt to
human-induced climate change. This disagreemenggkored in terms of daily
precipitation frequency and intensity. It is fouhdt divergent model projections
of changes in the incidence of rare heavy (> 60aday)/daily precipitation events
explain much of the model disagreement on annoeddcales, yet represent only
0.3% of precipitating days and 9% of annual préatmn volume. Of the 25
downscaled model projections we examine, 21 adnaeprecipitation frequency
will decrease by the 2060s, with a mean reductid b4 days/year. This reduces
California’s mean annual precipitation by abouth. Partly offsetting this, 16 of
the 25 projections agree that daily precipitatioemsity will increase, which
accounts for a model average 5.3% increase in aprecipitation. Between
these conflicting tendencies, 12 projections shaer dnnual conditions by the
2060s and 13 show wetter. These results are obt&iomn sixteen global general
circulation models downscaled with different conations of dynamical methods
(WRF, RSM, and RegCM3) and statistical methods (B@8d BCCA), although
not all downscaling methods were applied to eaobajlmodel. Model
disagreements in the projected change in occurreittes heaviest precipitation
days (> 60 mm/day) account for the majority of dre@ment in the projected
change in annual precipitation, and occur prefeabyver the Sierra Nevada
and Northern California. When such events are eledunearly twice as many

projections show drier future conditions.
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1. Introduction

California has taken an aggressive approach taaotrig human-induced
climate change (e.g., Anderson et al. 2008, Frated. 2011). For example, state
assembly bill 32 (AB 32) targets reducing greenkeayes emissions to 1990
levels by 2020. Actions are also being taken tpatathe anticipated changes,

such as taking sea level rise into account in ebasinning.

While it is nearly certain that California’s clingatvill warm in future decades
(e.g., Hayhoe et al. 2004; Leung et al. 2004; IPZID7; Pierce et al. 2012),
projections of annual precipitation change are prgwnore problematic. Model
results diverge significantly, with a model-meatueanear zero (e.g., Dettinger
2005). Although a projection of no significant clgans as valid as any other, it is
worth exploring the origins of this disagreement @pproach the problem using
a variety of global models and downscaling techegjiw examine how changes in
precipitation frequency and intensity on a dailgdéscale combine to produce the

annual change.

Changes in the frequency and intensity of predipiteevents can have a
profound impact. Precipitation frequency can affgops, tourism, and outdoor
recreation. More intense rainfall increases thencbaf flooding and, lacking
adequate reservoir storage, can mean that a largeortion of total precipitation
leaves the region through runoff, becoming unatél&or beneficial use. More
intense rainfall and the transition from snow tm raay also reduce groundwater

recharge in some locations (Dettinger and Earm@dy 2
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Numerous studies have examined projected chandealifornia’s monthly or
seasonal precipitation due to human-induced clirola#émge, but only a few have
examined daily precipitation intensity and freque(i€im 2005; Hayhoe et al.
2004; Leung et al. 2004). However, the physicatpsses causing changes in the
frequency and intensity of daily precipitation hdnexome better understood in
recent years. Warmer air temperatures allow moterwapor in the atmosphere,
providing a tendency towards more intense predipitaalthough the actual
processes controlling extremes depend on chandemjerature, upward
velocity, and precipitation efficiency (O’GormandaBchneider 2009; Muller et
al. 2011). Evidence from energy and water balawnostcaints (Stephens and Hu
2010) and global climate models (Meehl et al. 2008icates that climate
warming will generally result in greater intensgnecipitation events, though it is
less clear how these changes will play out reglgngbr example, in the region
of interest here, the migration of storm tracksepard implies a shift in
precipitation frequency over the west coast ofuh®. (e.g., Yin 2005; Salathe

2006; Ulbrich et al. 2008; Bender et al. 2012).

In California some of the projected precipitatidranges, particularly in daily
extremes, are related to atmospheric rivers of matpor that originate in the
tropics or subtropics and are advected by windstim west coast of North
America (e.g., Ralph and Dettinger 2011). Changegmospheric rivers
(Dettinger 2011) would be important because thenegete many of California’s
large floods, and play an key role in delivering #tate’s water supply (Ralph and

Dettinger 2011, 2012).



95 Global models can reproduce some large scale pattémprecipitation and its

96 variability, but typically simulate light preciptian days too frequently and heavy

97 precipitation days too weakly (Sun et al. 2006, &aal. 2006). This problem is

98 resolution-dependent; Wehner et al. (2010) showatlihtensity is captured

99 Dbetter as model resolution increases from 2 to @dsee. Chen and Knutson
100 (2008) emphasized the fundamental problems of cangpatation precipitation
101 observations, which are valid at a point, to clienatodel fields, which are

102 averaged over a gridcell.

103 Downscaling is often used to address the problegiaiifal model resolution that
104 is too coarse to simulate precipitation intensgguaately. Downscaling is

105 especially needed given California’s coastal amerior mountain ranges, which
106 affect precipitation yet are poorly resolved bylgbclimate models.

107 Downscaling can use either statistical methodsclwhre based on observed
108 relationships between small-scale and large-scaleepses, or dynamical

109 methods, which use regional fine-scale climate eatwer models driven by

110 global climate models.

111 Ouir first goal is to show how downscaled climatawdations project future

112 changes in daily precipitation frequency and initgresver California, and how
113 these combine to produce annual precipitation cbrgince our interest is in
114 water supply issues, we focus on absolute chamgjeg a single threshold for
115 heavy precipitation events across the state, ratla@ron percentage changes in
116 precipitation relative to the local climatology.t{@r investigators might be more
117 interested in the largest local fractional chanémsinstance how they affect the

118 local ecology.) This means that our analysis afstseip focusing on locations
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where heavy precipitation occurs, which in Califaris the Sierra Nevada and
northern part of the state. An analysis that findavy precipitation events are
important is necessarily intertwined with the leoatwhere such events can
happen, which is a function of how the regionaleneblogical setting (prevalent

moisture-bearing wind patterns, for example) intexavith the local topography.

The second goal is to compare how different stegisand dynamical
downscaling methods produce changes in precipitdteguency and intensity.
We use daily precipitation from two global modeysmamically downscaled with
three regional climate models, those two same ¢ldivaate models along with
two others statistically downscaled by a technitna¢ preserves the daily
sequence of global model precipitation, and thogkBdal models along with 12
more statistically downscaled with a technique thatidely used but does not

preserve the daily sequence of precipitation.

Due to the computational burden of dynamically dsgating with multiple

regional models, we limit our analysis to two pdsothe historical era (1985-
1994) and the 2060s. For the same reason we comsijethe SRES A2
emissions forcing scenario (Nakicenovic et al. 200@e 2060s is about the last
decade where the change in global air temperatireso anthropogenic forcing

is not well separated between different emissiaesarios (IPCC 2007). The
same models were used in Pierce et al. (2012)amame projected seasonal mean
and 3-day maximum temperature and precipitatiomgés in California; this

work extends that previous study by examining hbanges in precipitation
frequency and intensity on a daily timescale combaproduce overall

precipitation changes.
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2. Data and Methods

The models and downscaling methods used in thik e the same as used in
Pierce et al. (2012); we refer the reader to thakvior a detailed description. All
downscaling is to a ~12 km spatial resolution.dses where more than one
ensemble member was available for downscaling,sed ensemble number 1

from the global model.

The global models and downscaling methods appdiegch are listed in Table 1.
Each combination of global model and downscalimfptéque will be referred to
as a “model projection”. Dynamically downscaledutesare obtained using three
regional climate models (RCMs): 1) Version 3 of BRegional Climate Model
(RegCM3), which is originally based upon the MM5soscale model (Pal et al.
2007). 2) The NCAR/NCEP/FSL Weather Research amddasting (WRF)

model (Skamarock et al. 2008). 3) The Regional Bakllodel (RSM,

Kanamitsu et al. 2005), which is a version of thaidhal Centers for
Environmental Prediction (NCEP) global spectral elazptimized for regional
applications. The ability of the regional modelséproduce observed climatology
given historical reanalysis as forcing was examingdiller et al. (2009), who
concluded that while all the models have limitasigthey do a credible job

overall. In total, we examine five dynamically dasealed model projections.

Two methods of statistical downscaling are usedia$ Correction with
Constructed Analogues (BCCA,; Hidalgo et al. 200&ukér et al. 2010), which
downscales fields by linearly combining the closestlogues in the historical
record. 2) Bias Correction with Spatial Disaggrega{BCSD; Wood et al. 2002,

2004), which generates daily data from monthly GQMput by selecting a
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historical month and rescaling the daily precipitatto match the monthly value,
and so does not preserve the original global mseglience of daily precipitation.
The historical month chosen is conditioned on mignthecipitation amount, so
the number of zero precipitation days can changeespitation changes, but the
precipitation intensity changes in BCSD are lessaty connected to the GCM
results than in the other methods. Maurer and iaé2008) compared results of
using BCCA and BCSD, and concluded that they haveparable skill in
producing downscaled monthly temperature and pitatign. In total, we analyze

4 model projections with BCCA, and another 16 vtbSD.

BCCA and BCSD downscale to the same 1/8° x 1/82 ) latitude-longitude
grid used in the Hamlet and Lettenmaier (2005) nlag®nal data set. RegCM3,
WRF, and RSM each have their own fine-scale gri@@2 km) but are not
coincident. For consistency and ease of comparsttnobservations, the
dynamically downscaled fields were regridded toghme 1/8° x 1/8° latitude-

longitude grid used by the statistical methods @lngkrvations before analysis.

Natural climate variability due to such phenomesidha El Nino/Southern
Oscillation (ENSO) and the Pacific Decadal OsathatPDO) is not of direct
interest here, so in order to minimize these effest generally average our
results over multiple model projections. Sinceeatéiht projections have different
phases of ENSO, PDO, or other natural climate moéigariability, averaging
across model projections tends to reduce the infle®f natural variability on our

results.



189 2.1 Bias correction

190 Biases in downscaled precipitation fields can leeithaccurate hydrological

191 impacts, especially given the non-linear natureuabff. Since the project’s

192 purpose was to focus on hydrological and otheriegjpbns, all the precipitation
193 fields shown here are bias corrected (PanofskyBaireadl 1968; Wood et al. 2002,
194  2004; Maurer 2007; Maurer et al. 2010). Such biasesbe created by the

195 downscaling method, but often reflect biases inatginal global model (e.g.,
196 Wood et al. 2004, Duffy et al. 2006, Liang et &08). Details of the bias

197 correction procedure are given in Pierce et al1220

198 3. Results

199 3.1 Change in precipitation frequency

200 Current GCMs over-predict the number of days witgmell amount of

201 precipitation (e.g., Sun et al. 2006, Dai 2006; 1I€Card Knutson, 2008; cf.

202 Wehner et al. 2010). Typically this problem is adied by defining a threshold
203 below which a model is considered to have zeroipitation. For example, Leung
204 et al. (2004) used 0.01 mm/day, Caldwell et al0@Qsed 0.1 mm/day, and Kim
205 (2005) used 0.5 mm/day. Station observations havtet resolution too; in the
206 global summary of day (GSOD) data set no valuestlgan 0.25 mm/day are

207 reported, while NOAA'’s co-operative observing siafi typically report no values
208 less than 0.1 mm/day. We use a threshold of 0.ldayrtdelow which model

209 precipitation values are taken to be zero.

10



210 Figure 1 shows the climatological frequency (dagary of days with precipitation
211 less than 0.1 mm/day, hereafter referred to a®“pezcipitation days”. Panel a) is
212 the mean across all model simulations for the hstbperiod, and panel b) is
213 from the Hamlet and Lettenmaier (2005) observatmres the period 1970-99.
214 The two fields are similar, but all model fieldg dmas corrected (Pierce et al.
215 2012), which reduces the disagreement between adel observations. It

216 makes little sense to reformulate a non-bias ctedeeersion of BCSD or BCCA,
217 but the dynamical downscaling methods apply biasection after the

218 simulations are performed. Panels c) and d) ofréigushow the number of zero
219 precipitation days from the dynamically downscateodels with and without bias
220 correction, respectively. With bias correction thember of zero-precipitation
221 days matches observations much better than bef@secbrrection, even though
222 the precipitation rate is bias corrected rathen tih@ number of zero precipitation
223 days. The non-bias corrected fields have too few peecipitation days. Besides
224  the propensity for models to simulate too manytlgiecipitation days, this

225 reflects the tendency of dynamic downscaling is tkegion to produce more

226 precipitation than observed (Miller et al., 200@anel e) shows histograms of
227 percentage of gridpoints in the domain that expeedhe indicated rate of zero-
228 precipitation days/year. The non-bias correctetbgram (green triangles) is a
229 poor representation of the observed distributied @ircles). Bias correction

230 improves this substantially (purple crosses), altodifferences in the

231 distributions are still evident, particularly arau220 and 270 days/year.

232  Figure 2 shows the change (future minus historicadnnual precipitation
233 amount and frequency of zero-precipitation days@eith the empirical

234 cumulative distribution function (CDF) of these qtities. All values are
11
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averaged across model projections. The numberrof@ecipitation days
increases by 6-14 days per year over most of theadg especially Northern
California and the Sierra Nevada, which is an iaseeof 3-6% (Figure 2e). Yet
model-mean precipitation in this region increadighily, which implies that
precipitation intensity has increased. Similarhg southern coastal regions show
pronounced drying, but do not show the largesteiase in zero-precipitation
days. Overall, 73% of the gridcells experience eéasing precipitation, and the
median change in number of zero-precipitation dasdays/year (about a 3%

increase).

The effect of each downscaling technique on the@géan number of zero
precipitation days is shown in Figure 3, illustchfer the two global models that
were downscaled with the most techniques (CCSM3GHOL CM2.1). The
original global model field is shown in the leftm@®lumn for comparison.

BCSD tends to show the least increase in zero4ptation days while BCCA
tends to show the most, although the differencesarall. The decreasing number
of zero-precipitation days in the interior southesish RSM downscaling is
associated with a more active North American monsés discussed in Pierce et
al. (2012), this is primarily a summer respons¢ ihaeen more clearly with
dynamical downscaling than statistical downscalary is relatively more
influenced by the individual dynamic downscalingdebbeing used then by the
global GCM being downscaled. This suggests thatiétails of the projected
summer monsoonal changes are sensitive to the eloadigirecipitation

parameterizations used in the regional dynamicaleiso

12



258 3.2 Effect of downscaling on daily precipitation intensity

259 Figure 4 shows the way different downscaling tegtes alter the global model’s
260 daily precipitation intensity. The colored maps\wsttbe ratio of downscaled

261 precipitation rate in a gridcell to the global mbsl@recipitation rate on the same
262 day and interpolated to the same gridcell, averaged days with precipitation.
263 We term this the “amplification factor.” The lindogs show histograms of the
264 amplification factor across all gridcells for eatdwnscaling technique. BCSD
265 results are excluded since they do not preservdaltg sequence of GCM

266 precipitation. Results are broken out by low, mediand high tercile of the

267 original global model precipitation intensity iretigridcell.

268 The amplification factor varies spatially and namehrly with the magnitude of
269 the GCM's precipitation. Each dynamical downsaalmethod changes the

270 global model precipitation signal in a characterigtay, though all amplify the
271 global model’s precipitation rate in the lowesttkr. In the Sierra Nevada and the
272 northern coastal mountains, dynamic downscalinglifiegoprecipitation rates in
273 the low tercile by 4 or more compared to the oayi@CM. In the medium and
274  high terciles the dynamically downscaled simulaierhibit successively greater
275 fractional precipitation rate reductions in raimgbw regions with respect to the
276 original GCMs. In such locations the GCMs typicaltpduce unrealistically

277 heavy precipitation due to adequately resolveddoggahy.

278 The amplification factors of the three dynamicakimoels are similar to each

279 other, and all differ from the BCCA statistical inedl, a feature particularly

280 evident in the histograms. BCCA has a more linekationship between global
281 and downscaled precipitation intensity, especiallpnountainous terrain such as

13
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the Sierra Nevada and coastal range, where noariiies in the dynamical

methods are pronounced.

The largest non-linearities in BCCA’s amplificatitactor are in the rain shadow
regions. The real world shows this behavior as;vegllanalysis of the Hamlet and
Lettenmaier (2005) data shows that as regionakbgeer precipitation increases,
the contrast between precipitation in the mountaims precipitation in the rain
shadow increases as well (not shown). BCCA, beasgt on observations,

mimics this behavior.

3.3 Future change in daily precipitation intensity

Figure 5 shows the change (future minus historicate fraction of precipitating
days that have precipitation of the indicated istgn(mm/day), averaged across
all model projections. In most locations the frantl occurrence of amounts less
than 10 mm/day decreases. However this is compehéat by a greater
occurrence of days with 20 mm/day or more. Overhmafahe dry interior, values
greater than 100% indicate that when considerig a@eys with precipitation, the
rate of days with heavy precipitation more thankdes. Elsewhere, such days

typically increase by 25-50%.

Figure 2 showed that the number of days with prtipn generally declines, so
the increase in fraction of precipitating days wittavy precipitation does not
necessarily mean that the actual number of dayggserwith heavy precipitation
increases. (l.e., if it rains half as often, b ftaction of rainy days that have
heavy rain doubles, then the number of heavy rays gher year is unchanged.) To

clarify this, Figure 6 shows the change in preeijan intensity expressed as the

14
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change (future minus historical) in number of dpgsyear, averaged across
model projections. Over most of California, espiide Sierra Nevada and
North Coast regions (which experience most of Gali’s precipitation) the
number of days with 0.1 to 20 mm/day of precipttiatdecreases, while days with
60 mm/day or more increase. Because heavy preoppitdays are rare the
increase in number of days per year is low. Irtlakses of precipitation intensity,
Southern California experiences the least charfggsie 6, right panel), while
Nevada experiences the greatest decrease in ligtipgation days and Northern

California experiences the greatest increase imyhpeecipitation days.

The effect of downscaling technique on changesegipitation intensity is

shown in Figure 7. For brevity, only changes inltheest (0.1-5 mm/day) and
highest (60+ mm/day) intensity bins from Figureré shown. The downscaled
change in California’s average annual precipitatomputed by each method is
given in the panel title, for reference. Away fréime summer monsoon region, the
different downscaling techniques consistently sateifewer light precipitation
days in both global models. However results forgtiengest precipitation
intensities are not consistent, either acrossmiffedownscaling techniques or for
different global models across a single downscaketnique. This suggests that
inconsistencies in the way changes in heavy pratipn events are simulated
could be an important source of model disagreememfature precipitation
changes, a point explored further below. For GHDE,different downscaling
methods produce annual mean changed 6% to —2.3%; for CCSM3, the range

is —17.9 to 8.7%. Therefore, we see that even dgiversame global model data as

input, downscaling can produce a wide range ofinatual precipitation changes.

15
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3.4 The combined effect of frequency and intensity

The projected change in California’s annual meagipitation shows little
agreement across models (e.g., Dettinger 2005)oifetesults indicate that
models agree that precipitation frequency will éase and (to a lesser extent)
daily intensity will increase. Since the annualgpéation amount is determined

by the frequency and intensity of precipitationmegeis this a contradiction?

To sensibly compare the effects of changes in #aqy and intensity on annual
precipitation requires expressing quantities indhme units. We linearize the
problem by assuming that that loss of a precipitatiay in the future decreases
the total annual precipitation by an amount eqoidhé average rainy-day
precipitation in that day’s month during the higtal period. (The day’s month is
used because, for example, loss of a July pretimmtaday typically has less effect
on the annual average than loss of a Februarygitating day.) The effects of
changes in precipitation intensity are then catedas the actual change in
precipitation minus the contribution due to thera@in number of precipitating

days.

Figure 8 shows the effect of the change in Calitpaveraged precipitation
frequency (panel a) and intensity (panel b) onl extaual precipitation (panel c).
Of the 25 model projections, 21 show a negativdeéany in annual precipitation
due to fewer days with precipitation, with a meaglohe of 32 mm/year (5.7% of
the annual total precipitation of 557 mm). Sixteeodel projections show greater
precipitation intensity, which accounts for an gase of 29 mm/year (5.3%) in
the annual total. When these competing tendencgeaddled together the results
are distributed around zero, with 12 models showlingr future conditions and
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13 showing wetter. Although the small sample of BQ€sults prevents
definitive conclusions, Figure 8b suggests that B@@ay produce less increase
in precipitation intensity than other methods. il consistent with Figure 7 for

the CCSM3 model, but not for GFDL.)

The inference from Figure 7 was that model disages# between projected
changes in California’s annual precipitation magefrom the relatively few
precipitation events > 60 mm/day. This can be tebtecomputing the change in
annual precipitation only including gridcells analyd (“gridcell-days”) when the
gridcell’s daily precipitation is less than someattivalue. Results are shown in
Figure 9, with the precipitation cutoff increasiingm 5 to 60 mm/day. At the
lower cutoffs, the models overwhelmingly agree foadign of the annual change.
Even when all gridcell-days with precipitation lésan 60 mm/day are included
(99.7% of all possible gridcell-days), almost irBds as many models show a
precipitation decrease as an increase. Only whesfirthl 0.3% of gridcell-days
with heaviest precipitation are included do the eisdlisagree, with half showing
an annual precipitation increase and half showidgaease. These events occur

only rarely, but have a strong influence on theuahprecipitation change.

Precipitation events > 60 mm/day occur preferegtialthe Sierra Nevada and
Northern Coastal regions (Figure 10; cf. Ralph Bettinger 2012). On average,
they occur about 1 in every 50-200 days in the INort Coastal and Sierra
Nevada regions. When considering precipitating aeng (Figure 10b), such
events are about 1 in every 10-50 precipitatinggsdayhe North Coast, Sierra
Nevada, and Los Angeles coastal mountain regioms.Hamlet and Lettenmaier

(2005) data set indicates that typically about 9%alifornia’s total annual

17
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precipitation volume falls during such days. Thenalative distribution functions
(Figure 10c) indicate that as the relationship leetwthe occurrence rate
(expressed as a 1-in-N days rate) and the fraofignidcells experiencing that
occurrence rate or higher is approximately expaakenh other words, high
occurrence rates (small N) are concentrated inal sagion, and the occurrence

rate drops dramatically as more grid cells are iciemed.

3.5 Changes in precipitation frequency and intensity over the year

Most of California’s precipitation falls during tle®ol months (October through
April). Figure 11 shows the change in precipitatiynmonth (top row), change in
the number of days with non-zero precipitation (@hédow), and 50th and 95th
percentiles of precipitation on days with non-zerecipitation (bottom row).
Values are averaged over four representative aimeggions identified by
Abatzoglou et al. (2009; Figure 12), which are blase the covariance of
anomalous precipitation and temperature over tie.sbnly BCCA and
dynamically downscaled data have been used irattagysis, since those preserve
the daily sequence of precipitation from the orgjiglobal models. (In a
sensitivity test we recomputed this figure using3Cdata, and found little
difference except in summer in the North Americasmsoon region, where
BCSD does not show the pronounced tendency toweetter conditions.) Figure
2 showed that zero precipitation days increase et of the domain, but Figure
11 shows this does not happen uniformly over ttee. yéirtually the entire state
has a statistically significant drop in spring pp&ation (Figure 11, top row),
particularly in April. This is accompanied by a desse in precipitating days
(Figure 11, middle row), although this decreaseoisalways statistically

18



401 significant. This pattern is repeated, althougheneeakly, in the autumn: most

402 regions show decreasing precipitation associatéd fewer precipitating days.

403 Most of the regions, with the exception of the Aiarrego, show a tendency
404 towards increasing 95th percentile precipitationrdyisome or all of the cool
405 season months (Nov-Mar; bottom row of Figure 11nt&f average precipitation

406 increases despite fewer precipitating days begangsgpitation events intensify.

407  Although this result is obtained with data pooledoas the BCCA and dynamical
408 downscaling techniques, the models do not all agneihis result. Of the four
409 global models (CCSM3, GFDL 2.1, PCM1, and CNRM CM3ESM3 shows the
410 strongest increase in winter precipitation intgngBFDL 2.1 and PCM1 show
411 weaker increases in intensity along the coast aededses in the far Northeast,
412 while CNRM shows mild decreases in storm inten@tyd winter decreases in
413 precipitation of 8-45%, mostly due to fewer dayshwairecipitation) throughout

414 the state.

415 The Anza-Borrego (Figure 11) and Inland Empire aagi(not shown), which are
416 affected by the North American monsoon, experiercecrease in summer (JJA)
417  precipitation that is associated with an increadeoth precipitation frequency

418 and intensity. Because of the spread of resportgessathe models, these changes
419 are not statistically significant. CCSM3 and GFDlow these increases strongly,

420 while CNRM shows only a weak increase and PCM shglgght decrease.
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3.6 Summary of changes in California precipitation frequency and

intensity

The overall effect of seasonal changes in dailgipr&tion intensity and
frequency is shown in Figure 13. Equivalent changegasonal precipitation
(cm) are calculated as in section 3.4 (so thatadlles have the same units), and
results averaged across all model projections. Eggibn's change in future
precipitation is equal to the sum of changes dubéamumber of precipitating

days and changes due to precipitation intensity.

In winter and spring almost all locations show meréase in daily precipitation
intensity, except for the southern part of theestatwinter. At the same time,
almost all locations and seasons show a decredle mumber of precipitating
days, except for summer, where there are few ptatiy days in California to
begin with. The exception is the southeasterngfdtie state in summer, which
shows more precipitating days. The way the opposingencies of precipitation
frequency and intensity combine yields a complexepa of seasonal
precipitation changes. In the northern part ofdfae in winter, the increase in
storm intensity is stronger than the decrease mbau of precipitating days,
resulting in an overall mild (3-6%) increase ins@@al precipitation. In spring
(MAM) a mild increase in daily precipitation intetyscoupled with a strong
decrease in number of precipitating days yieldgificant tendency towards less
precipitation (declines of > 10%). This can alsasben in autumn (SON),
although the changes in storm intensity are smahis season. Finally, the
southeastern part of California, on the edge oféiggon affected by the North

American monsoon, shows both a mild increase imstotensity and strong
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445 increase in number of precipitating days in sum@&A), resulting in large (>

446 100%) increases in that season's precipitation.

447 4. Summary and Conclusions

448 This work has evaluated future changes in dailgipr&tion intensity and
449 frequency in California between the historical pdrii985-1994 and the 2060s.
450 Our goal is to see how model disagreements in giegeannual precipitation

451 changes are expressed at the daily timescale.

452 We used data from 16 global climate models (GCMs)rascaled with a

453 combination of statistical (BCCA and BCSD) and dyizal (WRF, RCM, and
454 RegCM3) techniques, although not all downscalimgptéques were applied to
455 each global model. We analyzed 25 model projectiongtal, where a model
456 projection is a unique combination of global moaledl downscaling technique.
457 We used the SRES A2 greenhouse gas and anthrop@g@osols emissions
458 scenario, and equally weighted all model projedj@ince there is currently no
459 Dbasis in the published literature for weightingeliént downscaling techniques

460 differently.

461 Our interest here is in water supply issues, séoses on changes in total

462 statewide precipitation rather than fractional desrelative to the local

463 climatology. Twelve models project less annual jmigtion and 13 project more.
464 The root of these differences is the way each mool@bines changes in

465 precipitation frequency and daily precipitationeinsity.

466 The model projections agree that substantial pustaf California, particularly in

467 the Sierra Nevada and North Coastal regions (wm@chive the majority of the
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state’s precipitation) will have 6-14 fewer pretaping days/year. Over the
northern half of the state, this represents a deaf about 8-15%. Twenty-one of

the 25 projections agree on the sign of this declin

Most of the model projections also agree that daigcipitation intensity will
increase. Expressed as a fraction of the numbaayx that experience
precipitation, the incidence of days with precipda greater than 20 mm/day
increases by 25-100% over almost the entire docmsidered here. Expressed
as an incidence rate over all days of the yearj(sbtprecipitating days),
precipitation rates below 10 mm/day decrease osarly all of California, while
most models project an increase in events of 60dayndr more over the Sierra
Nevada and Northern Coastal regions. This has aapdins for flood
management (Das et al. 2011), particularly as wintecipitation transitions from
rain to snow (e.g., Knowles 2006) and the snow sredtlier in the year (e.g.,
Kim 2005, Hayhoe 2004, Das et al. 2009). Heaviecipitation could also
increase the fraction of precipitation that geresaurface runoff, reducing

groundwater recharge (Dettinger and Earman, 2007).

Where the models disagree is whether the increggeecipitation intensity is
sufficient to overcome the drying effects of feypeecipitating days. This
disagreement arises largely from differences inctrenge in occurrence of events
with precipitation > 60 mm/day. The largest absel{ie., not fractional) changes
in such heavy precipitation events occur prefeadigtin the Sierra Nevada and
northern California. The importance of changesihcidence of heavy
precipitation events is thus tied to the importaotkcations where such events

are relatively common. When such events are exdlul® times as many model
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projections show declining annual precipitatiorCalifornia as increasing. When
they are included, the model projections are abplit between drier and wetter
future conditions. The change in incidence of tHessvy precipitation events

depends on both the global model and downscalcigique.

Events of this magnitude are rare, constitutiny atlout 9% of annual
precipitation volume and 1 in every 10-50 precijoia events in the Sierra
Nevada, Northern Coastal, and California coastayea, and are almost unknown
elsewhere. This implies that efforts to narrowriduege of future precipitation
projections over California need to focus on thelals' representation of the
rarest, heaviest precipitation events, how sucintsvaight be enabled by the
interaction of the regional meteorological settivith local topography, and the
fidelity of the models’ atmospheric rivers (Zhu addwell 1998). Atmospheric
rivers play a key role in heavy-precipitation owesiny parts of the world (e.g.,
Lavers et al. 2011; Neiman et al. 2011; Dettingexl €2011; Viale and Nufiez

2011; Krichak et al. 2012), so our results couldlapo other regions as well.

Winter precipitation increases in the northern pathe state are driven by
significant increases in daily precipitation intéysvith only mild decreases in
the number of precipitating days, while spring antlimn decreases in
precipitation are driven by fewer precipitating dayith only mild increases in
precipitation intensity. The change in number @&qgyitating days may be related
to the poleward movement of the storm tracks exgeeahder human-induced
climate change (e.g., Yin 2005; Salathe 2006; Clbat al. 2008; Bender et al.
2012). In the southern part of the state, althaughy simulations exhibit

moderate increases in winter precipitation intgnsitese increases are offset and
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in several cases overwhelmed by decreases in theenof precipitating days.
Overall, the water supply effects of the tendenicthe snowpack to melt earlier

in spring will be exacerbated by a decrease imggprecipitation. A similar

finding for the headwaters of the Colorado Riveswatained by Christensen and

Lettenmaier (2007).

The dynamical downscaling techniques (WRF, RSM,RedCM3) produced a
non-linear amplification of the global precipitaticate, with smaller rates of
global precipitation amplified the most. If thisabks the dynamical techniques to
keep the soil more saturated than when BCCA dovingcis used, it could affect
the runoff efficiency (fraction of precipitationahgenerates runoff) that is
simulated when using different downscaling techagyurhis could be usefully

explored in future work.

Finally, we note that projected future changesaitif@nia’s annual precipitation
are generally small compared to either naturatameual climate variability or
the spread between different model projections,(Bettinger 2005, Pierce et al.
2012). These results show that divergent modahaséis of future annual
precipitation may be composed of individual seakohanges in daily
precipitation intensity and frequency that haveectic geographical setting and
are much more consistent across models. Futumaptifeo examine whether
human-induced climate change is measurably affg&ifornia’s precipitation
might find identifiable changes in these other aspef the precipitation field

long before the net annual change becomes evident.
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Table legends

Table 1. The global general circulation models (&P Msed in this project, their
originating institution, and whether they were deaaled by the indicated
method. BCSD: bias correction with spatial disaggt®n; BCCA: bias
correction with constructed analogues; WRF: weathsgarch forecast model;

RSM: regional spectral model; RegCM3: Regional alienmodel version 3.
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Figure legends

Figure 1. Climatological number of zero-precipibatidays per year from: a) All
model runs over the historical period; b) Obseoratj 1970-99; c) Only the
dynamically downscaled runs over the historicalqeerwith bias correction; d)
Only the dynamically downscaled runs, without lmagection. Color scale is
along the bottom. Panel e: histogram showing teguency of occurrence
(expressed as the percent of gridcells) experigrtia indicated number of zero-

precipitation days per year.

Figure 2. Panel a: Change (future era minus hesrin annual precipitation
(percent). b) Empirical cumulative distribution @tion (CDF) of the precipitation
changes; 73% of the gridcells experience decreasigpitation. c) Change in
number of zero precipitation days per year. d) @DEhanges in number of zero-
precipitation days per year; the median value @®iaB days/year. e) As panel c,
but in percent. f) As panel d, but in percent. &llues are averaged across all

downscaling methods and models.

Figure 3. Change in the number of zero-precipitatiays (days/year), future era
minus historical, as a function of global modeb@k on the left) and

downscaling technique.

Figure 4. Colored maps: the mean ratio of downsicaeylobal model daily
precipitation, computed on days with precipitat{tre “amplification factor”).
Rows correspond to the downscaling method; WRF, R&M RegCM3 are
dynamical methods, while BCCA is a statistical noethWhen the downscaling
method was applied to more than one global moklelptean across global
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732 models is shown. Columns correspond to tercilebefjlobal precipitation
733 amount in each gridcell for the day being downstalde color scale for the
734 maps is along the right hand side. Line plots:dgsims of the amplification
735 factor for the different downscaling methods takeross all gridcells, for the

736 indicated tercile of global precipitation amount.

737 Figure 5. Change (future minus historical erahim inhcidence of the indicated
738 precipitation rate, averaged across all model ptimes. Values are expressed as a
739 function of the percent of precipitating days.,laevalue of 100% indicates that

740 twice as many precipitating days have the indictee.

741 Figure 6. Left panels: change (days/year) in inoogeof indicated precipitation
742 intensity, future minus historical era. Right partkeé regional average of the data
743 in the left panels, as a function of precipitatiotensity. The dividing latitude

744  between Northern and Southern California is takeB862N.

745  Figure 7. The effect of different downscaling teicues on changes (number of
746 days/year) in precipitation intensity in the lowast highest bins from Figure 6
747 (0.1 to 5 mm/day, and 60+ mm/day, respectivelyk Tipper set of panels shows
748 results from the GFDL CM2.1 global model; the lowet shows results from the
749 CCSM3 global model. The mean change (future — hestbera) in California

750 annual precipitation obtained by each downscaliethad is noted in the title.

751 Figure 8. Change in California’s annual mean pigtipn (mm) due to the
752 change in the number of zero precipitation day) @nd precipitation intensity
753 (middle). Right: the total annual mean change, wiscequal to the sum of the

754  components shown in panels a and b. Model projectionber is along the x axis.
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Results using BCCA, BCSD, and dynamical downscadiregcrosshatched, solid,

and stippled, respectively.

Figure 9. Change in California’s annual precipdatacross model projections (x
axis) when only days with less than the indicatestipitation rate (mm/day) are
included. The percentage in the title shows thetitva of gridcell-days included
for indicated cutoff. Results using BCCA, BCSD, alysthamical downscaling are

crosshatched, solid, and stippled, respectively.

Figure 10. Mean model occurrence rate (expressédra®l days) of precipitation
events with > 60 mm/day. a) When considering ajisdd) When considering
only days with precipitation. Grey areas experieinoe 60 mm/day events. c¢)
Empirical cumulative distribution function (CDF) tife values of N across all

gridpoints that experienced an event with > 60 nayforecipitation.

Figure 11. Changes in precipitation intensity veqtiency over the annual cycle
in 4 regions. Top row: Annual cycle of monthly gmtation (mm/day), for the
historical (blue) and future (red) eras. The changgsarly precipitation (%) is in
the title. At each month, a box is drawn betweenttistorical and future values;
the box is shaded green if the future value iseve&ind brown if it is drier. The
box has a heavy outline if the difference is stiatidly significant at the 95%
level, a normal outline if significant at the 90@¥¢l, and a light grey outline if
not statistically significant. Black dots show imdiual model values. Middle row:
Change in number of days with non-zero precipitafloainy days"); yellow
boxes show a decrease in rainy days, while greg®ekow an increase. Bottom
row: The 50th (solid line) and 95th (dashed linejgentiles of precipitation,

calculated only on days when precipitation occuyrfedthe historical (blue) and
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future (red) eras. The Y axis uses a square rapnstormation to cover the wide
range of values. Data from the dynamical and BCG#rikcaling methods was

used to make the figure.

Figure 12. California climate regions identified Algatzoglou et al. (2009). The

sub-panels in Figure 13 are plotted in accordaritietive locations shown here.

Figure 13. Apportioning the seasonal precipitatbange in each region to
changes in storm frequency and intensity. In eatlofsthree bars, the left most
(marked "P") shows the change in precipitationmyithat season (cm). (For
comparison, the change in seasonal precipitatishasvn at the bottom of each
subpanel, in percent.) This bar is colored greempdsitive (wetter future)
changes, and brown for negative (drier future) geanThe middle bar (“Z")
shows the change in seasonal precipitation (cntattiges due to the change in
number of zero-precipitation days. Yellow indicaé@sincrease in zero-
precipitation days, and grey indicates a decreBse rightmost bar (marked "I")
shows the change in seasonal precipitation (cnt)afises from the change in
precipitation intensity. Red shows an increasirgrnisity, blue shows decreasing
intensity. Note that the Y axis varies by regiouat tor each region is the same

across all seasons. Sub-panel locations are dhastin Figure 12.
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Table 1

GCM Institution BCSD BCCA WRF RSM RegCM3
BCCR Bjerknes Centre Clim. Y

BCM 2.0 Res., Bergen, Norway

CCCMA Canadian Centre, Y

CGCM3.1 Victoria, B.C., Canada

CNRM Meteo-France, Toulouse, Y Y

CM3 France

CSIRO CSIRO Atmos. Res., Y

MK3.0 Melbourne, Australia

GFDL Geophys. Fluid Dyn. Lab, Y

CM2.0 Princeton, NJ, USA

GFDL Geophys. Fluid Dyn. Lab, Y Y Y Y Y
CM2.1 Princeton, NJ, USA

GISSe_r NASA/Goddard Inst. Y
Space Studies, N.Y., USA

INMCM Inst. Num. Mathematics, Y

3.0 Moscow, Russia

IPSL CM4 Inst. Pierre Simon Y
Laplace, Paris, France

MIROC 3.2 Center Climate Sys. Res. Y

medres Tokyo, Japan

MIUB Meteor. Inst. U. Bonn, Y

ECHO-G Bonn, Germany

MPI- Max Planck Inst. Meteor., Y

ECHAM5  Hamburg, Germany

MRI Meteor. Res. Inst., Y

CGCM2.3.2 Tsukuba, Ibaraki, Japan

NCAR Nat. Center Atmos. Res., Y Y Y Y

CCSM3 Boulder, CO, USA

NCAR Nat. Center Atmos. Res., Y Y

PCM1 Boulder, CO, USA

UKMO UK Met Office, Exeter, Y

HadCM3 Devon, UK

Table 1. The global general circulation models (&YMsed in this project, their
originating institution, and whether they were deaaled by the indicated
method. BCSD: bias correction with spatial disaggt®n; BCCA: bias
correction with constructed analogues; WRF: weathsearch forecast model;

RSM: regional spectral model; RegCM3: Regional alienmodel version 3.
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a) All models e) Frequency of occurrence
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805 Figure 1. Climatological number of zero-precipibatidays per year from: a) All
806 model runs over the historical period; b) Obseoratj 1970-99; c) Only the

807 dynamically downscaled runs over the historicalquerwith bias correction; d)
808 Only the dynamically downscaled runs, without liasection. Color scale is
809 along the bottom. Panel e: histogram showing thguency of occurrence

810 (expressed as the percent of gridcells) experigrtia indicated number of zero-

811 precipitation days per year.
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/net/puddle/data/cec_scenarios/vic_sims_dynam_corr/common_grid/rate_zero_and_mean_v7.R Wed Jan 30 14:01:36 2013

Figure 2. Panel a: Change (future era minus hesrin annual precipitation
(percent). b) Empirical cumulative distribution @tion (CDF) of the precipitation
changes; 73% of the gridcells experience decregsigpitation. c) Change in
number of zero precipitation days per year. d) @DEhanges in number of zero-
precipitation days per year; the median value @®iaB days/year. e) As panel c,
but in percent. f) As panel d, but in percent. vlues are averaged across all

downscaling methods and models.
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Figure 3. Change in the number of zero-precipitatiays (days/year), future era
minus historical, as a function of global modeb@s on the left) and

downscaling technique.
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Figure 4. Colored maps: the mean ratio of downsicaeylobal model daily

precipitation, computed on days with precipitat{tre “amplification factor”).

Rows correspond to the downscaling method; WRF, R&M RegCM3 are

dynamical methods, while BCCA is a statistical noethWhen the downscaling
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829

830

831

832

833

834

method was applied to more than one global molelntean across global
models is shown. Columns correspond to tercilée@flobal precipitation
amount in each gridcell for the day being downstalde color scale for the
maps is along the right hand side. Line plots:agsims of the amplification
factor for the different downscaling methods takeross all gridcells, for the

indicated tercile of global precipitation amount.
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ec_scenarios/vic_sims_dynam_corr/common_grid/plot_change_precip_in_bins_fracRdays.R Sun Sep 2 12:00:26 2012
Figure 5. Change (future minus historical erahia incidence of the indicated
precipitation rate, averaged across all model ptiges. Values are expressed as a
function of the percent of precipitating days.,laevalue of 100% indicates that

twice as many precipitating days have the indicted.
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Figure 6. Left panels: change (days/year) in inoogeof indicated precipitation

intensity, future minus historical era. Right pariké regional average of the data

in the left panels, as a function of precipitatiotensity. The dividing latitude

between Northern and Southern California is takeB86GN.
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846 Figure 7. The effect of different downscaling teicjues on changes (number of
847 daysl/year) in precipitation intensity in the lowastl highest bins from Figure 6
848 (0.1 to 5 mm/day, and 60+ mm/day, respectivelyle Thper set of panels shows
849 results from the GFDL CM2.1 global model; the lowet shows results from the
850 CCSM3 global model. The mean change (future — hestbera) in California
851 annual precipitation obtained by each downscaliethad is noted in the title.
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854 Figure 8. Change in California’s annual mean piigtipn (mm) due to the

855 change in the number of zero precipitation dayf) @d precipitation intensity
856 (middle). Right: the total annual mean change, tviscequal to the sum of the
857 components shown in panels a and b. Model projectionber is along the x axis.
858 Results using BCCA, BCSD, and dynamical downscadirgcrosshatched, solid,

859 and stippled, respectively.
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Figure 9. Change in California’s annual precipgatacross model projections (x
axis) when only days with less than the indicatetipitation rate (mm/day) are
included. The percentage in the title shows thetifva of gridcell-days included
for indicated cutoff. Results using BCCA, BCSD, atythamical downscaling are

crosshatched, solid, and stippled, respectively.
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Figure 10. Mean model occurrence rate (expressédra®l days) of precipitation
events with > 60 mm/day. a) When considering ajisdd) When considering
only days with precipitation. Grey areas experieinoe 60 mm/day events. ¢)
Empirical cumulative distribution function (CDF) tife values of N across all

gridpoints that experienced an event with > 60 nayforecipitation.
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Figure 11. Changes in precipitation intensity vegfiency over the annual cycle

in 4 regions. Top row: Annual cycle of monthly pptation (mm/day), for the

historical (blue) and future (red) eras. The changearly precipitation (%) is in

the title. At each month, a box is drawn betweaenhistorical and future values;

the box is shaded green if the future value iseve#ind brown if it is drier. The

box has a heavy outline if the difference is stiatidly significant at the 95%

level, a normal outline if significant at the 90&¥¢l, and a light grey outline if

not statistically significant. Black dots show imdiual model values. Middle row:

Change in number of days with non-zero precipitafioainy days"); yellow

boxes show a decrease in rainy days, while greg$ekow an increase. Bottom

row: The 50th (solid line) and 95th (dashed linejgentiles of precipitation,

calculated only on days when precipitation occuyrfedthe historical (blue) and

future (red) eras. The Y axis uses a square rapstormation to cover the wide
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range of values. Data from the dynamical and BCG#riscaling methods was

used to make the figure.
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889 Figure 12. California climate regions identified Agatzoglou et al. (2009). The

890 sub-panels in Figure 13 are plotted in accordanttethe locations shown here.

52



891
892

893

894

895

896

897

898

899

900

AP total AP due to # zero days AP due to storm intensity

O Wetter O Less dry days O Heavier
@ Drier O More dry days O Lighter
Wmter DJF Spring (MAM
5F’ZT 5 F( ) 5l?’ZI 5P£T gi’ZI )
0 1 ol |-| imi | 0 0
u o3 -
-5 -5 - L5 -5
AP= 3% AP= 6% AP= 4% AP=-11%: AP= —12% AP=-10%:

P21 PZ1 PZ1 PZI P21 PZ1

4 5 4 5
2 2
2l ;| O = 2
O O O 0 0 0
4 -2 -5 r -2 -5
'_4AP‘= 1% aP=1% - AP=1086 AP= —13% AP=1-15% AP= -13%
PZ1 PZ1 PZ1 PZ1
2 1 2 1
Z -1 ) =1
AP=—0% ' AP= —B% AP=—-12% ' AP= -5%
PZI PZ1 PZ1 P71 PZ1 PZI
g § 1 g 1
0 a
‘? -1 :g Z -1
aP- -10% AP= -9 AP= -13% AP= =13% AP=-11% AP= -4%
SumnmrgJA] Autumn (SON)
PZ1 PZ1 PZ1 PZ1T PZT PZ1
5 5 5 5
0 0 i} 0
L5 -5 - -5 -5 -
AP= —41% AP= -313% AP= -23% AP= —18% AP= —20% AP= —1B%
4BZ1 PZ1 P71 A PZI1 PZ1
2 2 S 2 2 5
0 0 0 0 0 0
.—2 ) 5 —2 -2
'_‘!\P——15% AP=220% AP= -10% lj‘iP_ —21% AP= —21% AP= -22%
PZ1 PZ1 PZ1 PZI
1 1
0 = i 0
Z -1 2 -1
AP=35% AP=137% AP=-258% AP=-21%
P71 PZ1 PZ1 PZ1 PZ1 PZ1
2 1 2 1
- 0 (o
) - -1 o - -1
AP= 34%  AP=71%  AP= 103% AP= -18% AP= -13% AP= -4%

Figure 13. Apportioning the seasonal precipitattbange in each region to
changes in storm frequency and intensity. In eatlofsthree bars, the left most
(marked "P") shows the change in precipitationmythat season (cm). (For
comparison, the change in seasonal precipitatishasvn at the bottom of each
subpanel, in percent.) This bar is colored greempdsitive (wetter future)
changes, and brown for negative (drier future) geanThe middle bar (“Z")
shows the change in seasonal precipitation (cnt)afises due to the change in
number of zero-precipitation days. Yellow indicaéesincrease in zero-

precipitation days, and grey indicates a decregserightmost bar (marked "I")
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901 shows the change in seasonal precipitation (cnattges from the change in
902 precipitation intensity. Red shows an increasirgnsity, blue shows decreasing
903 intensity. Note that the Y axis varies by regiout for each region is the same

904 across all seasons. Sub-panel locations are dhestin Figure 12.
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