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Abstract

Global climate model temperature and precipitatieldls need to be corrected for biases
relative to observations before they can be usedlifmate change impact studies. Three existing
bias correction methods, and a new one developed &ee applied to daily maximum
temperature and precipitation from 21 climate medelinvestigate: 1) How bias correction
alters the climate change signal of the originatleip2) How different methods affect model
biases in the simulation of variance as a funabibitequency. Quantile mapping (QM) and
cumulative distribution function transform (CDFeips correction can significantly alter the
signal of change from the original climate modeathwdifferences of up to 2°C and 30
percentage points for monthly temperature and pitation, respectively. Equidistant quantile
matching (EDCDFm) preserves model-predicted chaimgéaily maximum temperature, but
alters model-predicted changes in precipitatiomjpyo 30 percentage points in some locations.
An extension to EDCDFm termed PresRat is introduaduch generally preserves the original
model-predicted changes in precipitation by opegatin ratios instead of differences, using a
precipitation threshold to make the fraction of mlozkro-precipitation days match observations,
and incorporating a final correction factor. Addlially, a frequency-dependent bias correction
method is introduced that is twice as effectivatasndard bias correction in reducing errors in
the models’ simulation of variance as a functiofrefjluency, and (unlike standard bias

correction) does so while making very few locatiamsse.
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1. Introduction

Global climate models (GCMs) are being used to@ephn ever widening set of
problems, some of which are sensitive to biaséisarmodel simulated fields (IPCC, 2007). For
example, daily precipitation biases can have ardetrtal effect on hydrological simulations due
to the non-linear nature of runoff; a moderate amad precipitation generates little runoff if the
soil is able to absorb the moisture, while doublimg precipitation might exceed the moisture
storage capacity of the soil and generate much tharetwice as much runoff. This non-linear
relationship becomes more extreme in arid regidvigley and Jones, 1985), intensifying the
sensitivity of runoff to GCM precipitation biaséskewise, significant biases in surface
humidity and evapotranspiration can arise fromtinetty small temperature biases due to the
nonlinear nature of the Clausius-Clapyron equatinfortunately, the detrimental impacts of
climate model biases on a non-linear system arstranghtforward to remove.

For this reason hydrological simulations generhifs correct GCM output fields before
they are used. Corrected variables include temperaind precipitation, and sometimes other
relevant quantities such as downward solar radiahamidity, or wind speed. Bias correction is
often an integral part of a downscaling schemettidas account of large scale GCM biases as
well as topographical and other effects that opesita finer scale than can be resolved by a
GCM (e.g., Wood et al. 2002; Maurer et al. 201®réHhowever we consider the bias correction
step alone. Maraun (2013) has pointed out thatdma®ction is most straightforwardly applied
on a spatial scale that is near the original GC3atial resolution, so we restrict our attention to
bias correction on a grid commensurate with thgioal GCMs.

One common form of bias correction is quantile mia@PQM; e.g., Panofsky and Brier

1968; Wood et al. 2002; Thrasher et al. 2012), tvlaidjusts a simulated climate variable (e.g.
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temperature or precipitation) at a given locatigmimpping the quantiles of the simulated
distribution onto the quantiles of the observatiahthat location. QM has been widely applied
to climate model output over the U.S. (e.g., Maeteal. 2007, 2014) and globally (Thrasher et
al. 2012). QM alters both the model's mean and teaipariability, bringing them into
agreement with observations over some common faatgreriod. Gudmundsson et al. (2012)
evaluate different ways of implementing QM and fthdt relatively straightforward non-
parametric methods, such as used here, perfornrcalpared to more complicated schemes.

Previous studies have shown that QM tends to theeoriginal GCM'’s projected trend
(Hagemann et al. 2011; Pierce et al. 2013; MaurdrRaerce 2013). Whether this is a desirable
feature is a research question not addressedHevesver, this property certainly engenders
confusion and inconsistent results, for examplevben bias corrected regional climate studies
and GCM results assessed by the IPCC (2007, 20E3¢limate model has too much variability
then QM tends to reduce variability on all timessalsuppressing the original trend. If the GCM
has too little variability, QM tends to increase thend along with variability on shorter
timescales. As bias correction is a purely stadstnethod it fails to discriminate between the
physical processes determining trends associatidanthropogenic forcing and shorter-term
fluctuations associated with natural internal clienaariability. From this perspective there is
little justification for allowing bias correctiomat primarily addresses problems on synoptic,
seasonal and annual timescales to change thedsawdll.

Some previous schemes have addressed the problaasaforrection altering GCM-
projected trends. For example, the BCSD method @Maa@l. 2002) removes temperature trends
over the period to be downscaled, bias correctglzamdownscales the anomalies to a fine grid,

then adds back in the original GCM trend fielderpblated to the fine grid. Although
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straightforward and useful, this approach has the/back that the final trend is, to first order,
merely the interpolated GCM trend. This is confgdim end users who might reasonably expect
that the downscaled trend will reflect more than@y the interpolated GCM trend, and means
that the spatial structure of the trend is not ssaely commensurate with the spatial structure of
the daily, monthly, or annual variability. In thigork we address this limitation by constructing a
bias correction method that retains the model-ptedichange in the first place. The bias
corrected fields can then be downscaled, and tfa¢ tiiend in the downscaled fields will be
affected by the downscaling process rather thamgdeidependent of it. Pierce and Cayan (2013)
addressed this issue by partitioning their futucelet runs into 30-yr segments (2010-2039,
etc.), downscaling each segment with respect towts climatology, then separately
downscaling the global model predictghnge in climatology in each segment and adding it
back in. This preserves model changes on timeskalgsr than 30 years but allows shorter
timescale changes to be bias corrected. The woeibenore widely applicable since it is a self-
contained bias correction method that preservestymeédicted changes without reference to
how subsequent downscaling handles the trend. ésisis potentially applicable to

downscaling methods where separately downscalegibdel-predicted change is not desirable
or viable.

Addressing the trend is not the only issue relet@otimate impact studies. The
approaches used in BCSD and by Pierce and Cayag)(B@at the trend differently from other
timescales during the bias correction processa¥@CM may have too much variability on, for
instance, synoptic timescales of 2-10 days butitée variability on the annual timescale.
Neither a simple quantile based bias correctiontm®iapproaches noted above address this

problem. Misrepresentation of variance as a funatibfrequency could influence a simulation
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of heat waves or flooding events, while distortiomghe relative importance of synoptic scale
versus interannual variability could affect agrtaut and ecosystems. Inaccurate partitions
between short- and long-timescale precipitatiomedity could affect simulations of droughts
and reservoir storage since the hydrological antbgaal result of a given amount of annual
precipitation varies greatly depending on whethergrecipitation is delivered equally
throughout the year or very unevenly, with a stroagtrast between wet and dry seasons.

While the CMIP5 GCM simulations appear to have iowed in these regards relative to
prior simulations, such biases can still be sultistbfBillmann et al. 2013). Lower frequency
variability in the climate system, such as El NiBodthern Oscillation (ENSO), with an
observed period of 2-7 years, are also imperfestthulated by GCMs (e.g., Bellenger et al.,
2013; Collins et al., 2013), as are the teleconoestthat can drive regional precipitation and
temperature variability (Sheffield et al., 2013nd natural variability in observations and
historical GCM simulations is not synchronized (ekglen et al., 2012), where regional climate
is influenced by low-frequency variability the bessin GCM climate output also can be
expected to mimic this natural variability, whicashbeen noted in GCM climate simulations
over the U.S. (e.g., Maurer et al., 2013). A cdaroecof GCM output to account for biases in
variability on different timescales is warrantedesimpacts are sensitive to this variability, and
has not yet been attempted.

Our first goal is to document how existing biasreotion schemes alter the projected
climate changes obtained from GCMs. We then propasethod that preserves the model-
projected changes. Third, we document model biasesfunction of frequency so that the
locations and extent to which this is a problerourrent state-of-the-art GCMs can be

understood. Ault et al. (2012) examined model lsagehe interannual and decadal timescales,



135 however we find that bias correction is sensitvenisrepresented variability on shorter

136 timescales as well. Lastly, we present a frequetependent bias correction scheme that reduces
137 the problem of frequency-dependent model biasesurdt et al. (2013) have already

138 demonstrated how model biases can vary over tideataxtreme percentiles; this work adds to
139 that list by showing that there are biases in vexgaat different frequencies.

140 The rest of this report is structured as followsséction 2 we describe the observed and
141 model data sources. Section 3 addresses the pralbleias correction altering model-predicted
142 changes, shows the extent to which this happexspaposes a bias correction scheme that

143 preserves model-predicted mean future changesoBecaddresses frequency-dependent model
144  biases, documents the extent to which these areiisdlee current generation of global climate
145 models, and proposes a method for correcting thieses. The interaction of frequency-

146 dependent bias correction with standard bias coorets also addressed. A summary and

147  conclusions are given in section 5.

148 2.Data sources and time periods

149 2.1 Global climate models

150 We use daily maximum temperature and precipitdiglds from 21 GCMs that

151 participated in the Coupled Model Intercomparisoojétt, version 5 (CMIP5; Taylor et al.,

152 2012), listed in Table 1. The models used arehalé¢ available from the U.S. Bureau of

153 Reclamation (USBR) archive of regridded (1°x1° liunde-latitude) CMIP5 global climate

154 models at the time this work was performed (ftptd'g

155 dcp.uclinl.org/pub/dcp/archive/cmip5/bcca; Maureale 2014). Using the USBR regridded data

156 has several advantages. It means we can build donalready done to obtain the raw climate
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model fields and regrid the disparate climate mayiels to a uniform representation.
Additionally, starting from the same regridded dasahe USBR archive uses ensures that later
work using the bias corrected fields generated banebe directly compared to the existing
USBR archive results.

Historical data are available over the period 192805. Future changes over the period
2006-2099 are simulated using model output fromasgntative concentration pathway 8.5
(RCP8.5) experiments, which correspond to a redftikiigh emissions scenario (van Vuuren et

al. 2011).

2.2 Observations

We used observed daily maximum temperature andpgiaon data from Maurer et al.
(2002), as updated through 2010 (available from
http://www.engr.scu.edu/~emaurer/gridded_obs/ingadded_obs.html). The ultimate source
of this gridded product is the NOAA co-operativesetver weather stations, with techniques
from the PRISM project (Daly et al. 1994) used ugraent observed precipitation values in
sparsely instrumented locations. The data are geolvon a 1/8° x 1/8° latitude-longitude grid,

which was aggregated to the same 1°x1° grid agltieal climate model outputs.

2.3 Time periods used

The World Meteorological Organization (WMO) recomds that climatological
normals be calculated over 30-year periods (a bigtbry of climatological normals can be
found in Trewin 2007). The U.S. National Oceanid &tmospheric Administration (NOAA)
and National Climatic Data Center (NCDC) do the sgeng.,
http://www.ncdc.noaa.gov/oa/climate/normals/usndsthéml). We follow this guidance by bias

correcting GCM values to a 30-yr climatologicaloet of observations, and furthermore by bias

8



180 correcting contiguous 30-yr segments of climateusations individually. For the future model
181 projections we bias correct the periods 2010-20890-2069, and 2070-2099 separately. In the
182 results shown below we focus on 2070-2099 as auuré” period. The climatological

183 (historical) period is the last 30 years of the GsCHistorical runs (1976-2005), used for both

184 the models and observations.

185 3. Preserving model-predicted mean changes

186 3.1 Overview

187 In this section we first evaluate the ability ofel existing bias correction methods to
188 preserve GCM-predicted future changes in daily maxn temperature and precipitation. We
189 then propose a modification to an existing biasexiton method for precipitation that preserves
190 model-predicted mean future changes.

191 Both temperature and precipitation are examineausexthey have different spectral
192 characteristics and we evaluate their changesarctwtrasting ways: as a difference with

193 temperature (future — historical) but as a ratithvairecipitation (future / historical). This is

194 unlike the analysis in Maurer and Pierce (2013)ictvlevaluated precipitation changes as a
195 difference. However, it can be useful to evaluateipitation changes as a ratio since GCMs
196 may have significant biases in precipitation faagiety of reasons including the inability to
197 adequately resolve topography and its effect onipitation, for example often extending

198 mountain precipitation too far into a rain shaddéwcertain regions and seasons model biases
199 may be several times the local observed climatglomking it sensible to consider model

200 changes as fractional changes relative to the risooeh base climatology rather than as

201 differences that are subsequently applied to oleseclimatology.
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In the results shown here all the bias correcmhhiques are applied to daily values
within each month (i.e., all days in January assla@djusted together, then all days in February,
etc.) to account for the cyclostationary naturelwhate fields. More sophisticated treatments of
this aspect of bias correction can be found ingf@ample, Piani et al. (2010), Abatzoglou and
Brown (2011), and Thrasher et al. (2012). The hisabperiod is 1976-2005 and the future

period is 2070-99.

3.2 Effect of quantile mapping on model-predicted changes

In quantile mapping (QM; Wood et al. 2002) a rawNb@aluex is converted to a bias
corrected valug according to

% = Fyt (Fn () €y

where, using the notation from Michelangeli e28109,F(x) is the quantile of valuein the
cumulative distribution function (CDFJ;*(u) is the value in a CDF of quantile the first
subscript iss for the station (observed) values anfibr the GCM (model) values, and the second
subscript ish for the historical time period. Thus, QM bias eats a model value by changing it
to the observed value at the quantile that the inadee falls in the model’s historical
distribution. The process is illustrated schemédticasing CDFs of synthetic gamma
distributions to mimic precipitation data, in Figuta and the caption thereof. Values off the end
of the distribution are handled as described in tMeioal. (2002), i.e. by fitting a Gumbel
extreme value distribution to the precipitationued and a Gaussian distribution to the
temperature values.

QM has difficulty bias-correcting precipitationtife GCM has more zero-precipitation
days than observed since there is no obvious ppéscrto determine which of the model’s too
numerous zero precipitation days should be assigmexh-zero value. If zero precipitation

10
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remains on these days, the QM bias-corrected tariesswill have a smaller mean value than
observed. However, in practice current GCMs gehehalve too few zero precipitation values,
sometimes referred to as the drizzle problem (8w, et al. 2006, Dai 2006).

QM’s tendency to alter GCM-simulated trends (agdah the introduction) was not
relevant to early applications of QM in hydrolodiozodeling, such as in Wood et al. (2002),
which developed and applied QM in the context essaal forecasting. When lead times are on
the order of a year or less there is no reasosdorae a significant shift in the model
distributions over the forecast period, so the biEliaof QM when the mean changes appreciably
was not examined. This is consistent with the flaat Eq. 1 uses only historical information, not
referring to the future model-projected distribusan any way. Despite this, QM has frequently
been applied to climate change simulations wherertban does change appreciably, for
example in multi-decade climate simulations thatude anthropogenic changes in greenhouse
gasses and aerosol forcing (e.g., Harding et 420

The tendency for QM to alter model-projected changellustrated with the CCSM4
GCM using July daily maximum temperature in FigRrand December daily precipitation in
Figure 3. Bias correction is applied and model-mted changes computed using a historical
(1976-2005) and future period (2070-2099). Note sieane fraction of variance over the future
period might arise from the anthropogenically farteend. The monthly average change
between the future and historical periods is comgbats a difference for temperature (future —
historical) and a ratio for precipitation (futurhistorical). The top row (right panel) of Figure 2
shows that QM decreases the model-predicted Jillydaximum temperature change by more
than 2°C in parts of Texas, Florida, and the Sagdtern states, and increases it by a similar

amount along the California coast. Similarly, Figg@shows that QM increases the model-
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predicted change in December precipitation by 30geage points over parts of the Northern
Sierra Nevada and Rockies. Smaller changes carbalseen over the upper Midwest and
Southeastern states.

Recently, two bias correction methods have beepldped that make specific choices
for how model-predicted future changes should datéd: the CDF-transform method (“CDF-t”;
Michelangeli et al. 2009) and equidistant quantikgching (‘EDCDFm”; Li et al. 2010). We
next examine these methods to determine whethgmptteserve GCM-predicted mean changes
in temperature and precipitation. As in Maurer Bielce (2013) we simplify by focusing
primarily on the model-predicted change in medialue instead of the mean, although it should
be kept in mind that changes evaluated in diffevemys, for example by a least-square trend, are
affected by the entire distribution rather thart jhe change in median, and trends may differ at

different quantiles.

3.3 Theeffect of EDCDFm bias correction on model-predicted changes
EDCDFm (Li et al. 2010) bias corrects a future eaddhat falls at quantile in the

future distribution by adding the historical valatei to the model predicted change in value:at
% = Ft (For () +x = Fgit (Fop () )

Where variables are defined as in Eq. 1 and thecsiyhbf is for the future time period. The

process is illustrated schematically in Figure & the caption thereof. When bias correcting a

historical run, so théfg = Fgn, EQ. 2 reduces to Eq. 1. By definition Eq. 2 press the GCM-

predicted future change in median value as lorth@shange is evaluated additively. EDCDFm

does not necessarily preserve the model-predit¢tadge in the mean (as opposed to median)

since the quantile at which the mean falls can gbahthe shape of the distribution changes in

the future. This does happen; for example, we tiivad for daily maximum temperature in the

12
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CMIP5 models, changes in the quantile at whichntlean falls can be 0.1 or more by the end of
this century. However, for daily maximum temperat@CM-predicted changes are generally a
weak function of quantile in the neighborhood af thean value, so EDCDFm preserves the
model-predicted change in mean value typically itniw a few hundredths of a degree C (e.qg.,
second row of Figure 2). Considering model uncetyeand natural variability this small
discrepancy is irrelevant for our applications, this should be re-evaluated if EDCDFm is
applied to another climate variable that underdes uniform changes as a function of quantile
or more exaggerated changes in the shape of thiéddigon, which could imply larger changes
in the quantile of the mean.

As formulated by Li et al. (2010) and seen in EERCDFm is an additive bias
correction method that preserves model-predictBdrdnces (as opposed to ratios), which is
appropriate for temperature. As expected, Eq. 2 do¢ generally preserve a GCM-predicted
fractional changes, i.e., (future model value tdrisal model value)/(historical model value).

At every quantile standard EDCDFm preserves theanatar of this ratio by definition, but in
the process of bias correction substitutes therebdevalue for the historical model value in the
denominator, changing the ratio. This is illustdaite the second row of Figure 3. When
evaluated multiplicatively using precipitation, EDEm alters the model-predicted change by
more than 30 percentage points over much of théhN@entral U.S. This will happen
particularly when there are both large biases argklchanges in the upper quantiles of a

skewed precipitation distribution.
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3.4 The effect of CDF-t bias correction on model-predicted changes
CDF-t bias correction (Michelangeli et al. 2009)d§ a transformation that maps the
GCM cumulative distribution function (CDF) of ardlate variable in the historical period to the

observed CDF, then applies that same mapping tG@M's future CDF, yielding:

For @) = Fon (Pt (Foy @) 0
Here,F« indicates the CDF of the bias corrected variabkénfuture. When bias correcting a
historical run Eg. 4 reduces to QM in general,@ltyh the treatment of values off the end of the
distribution (discussed further below) may come iplay.

As Figure 1c makes clear, QM and EDCDFm change detisovalue while preserving
its quantile (a point on tHey curve is bias corrected by moving it horizontallyhile CDF-t
changes a model’s quantile while preserving itsi@gh point on th&y curve is bias corrected
by moving it vertically). An alternative, but eqaient, explanation is that Eq. 4 preserves
model-predicted changes at quantiles, but unlik€BEBm the model-predicted change that is
preserved is taken from a different quantile thas applied to (EDCDFm applies the model-
predicted change at some quantile to that sameitg)an

For example, consider the GCM-predicted changeddiam value. The EDCDFm bias
corrected change in the median value is equalgaorthdel predicted change at a quantile of
u=0.5 (the median). However, the CDF-t bias corieecteange in the median value is equal to

the model predicted change at some other quaatilg,0.5. It can be shown that =
th(FS‘hl(O.S)), i.e. the percentile in the model historical disaition of the observed median

value. So CDF-t will only preserve model-predictédnges in the median under certain special

circumstances, such as wheh= 0.5 (i.e., the GCM predicted the correct mediaer the
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historical period in the first place) or if the nedgredicted changes are the same at different
guantiles (a simple shift in the distribution).

The third rows of Figure 2 and Figure 3 show tHeafof CDF-t bias correction on the
original GCM-predicted change in temperature amtipitation, respectively. CDF-t alters the
model predicted change in temperature by more 1A@nn the upper Midwest. The model-
predicted change in precipitation is affected Bs€DF-t than by quantile mapping or
EDCDFm, but still can change the model predictignrore than 30 percentage points in some
locations. In other months the precipitation atierss due to CDF-t bias correction can be as

large as those found by quantile mapping and EDCRtenhshown).

3.5 Biascorrection that preserves model-predicted mean changes

Figure 1d, Figure 2, and Figure 3 show that thedlnias correction methods considered
so far, QM, EDCDFm, and CDF-t, all produce reastmappearing yet different future CDFs
and fields. Lacking theoretical guidance therea®hvious way to choose which method
produces the most correct future representatioet al. (2010) and Maurer and Pierce (2013)
use historical natural variability as a surrogatefébrced changes to evaluate the quality of bias
correcting future changes, but as discussed in &tand Pierce (2013) this approach is limited
since natural variability does not necessarilyeafism the same physical processes as
anthropogenically forced climate change.

Each future field is determined by the assumptuafribe bias correction method used to
create it. QM assumes that the historical modelrenrvalue at a givewalue is preserved in the
future (arrow (2) in Figure 1a), EDCDFm assumet ttiia historical model error in value at a
givenquantile is preserved in the futurd {n Figure 1c), and CDF-t assumes that the histbric

model error imuantile at a given quantile is preserved in the futureof@n(2) in Figure 1b).
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(The “missing” version of this quartet of bias @wtion methods, which would assume that the
historical model error in quantile at a givelue is preserved in the future, could also be
constructed.)

Here we explore an alternative assumption: thaG@&l-predicted mean change is
preserved in the bias corrected future projectidhg. advantage of this approach is that
downscaled results will then be more consistertt @itisting GCM analyses such as IPCC
(2007, 2013).

EDCDFm already preserves model-predicted changesrperature (evaluated
additively) for all practical purposes so we adbfwr temperature here. However an amended
form is required for precipitation since we evatués changes multiplicatively. Eq. 2 can be

recast as a multiplicative scheme that presenemthdel-predicted change as a ratio:

_*
Fon (Fgf(x)).

In other words, if the predicted GCM valuéalls at quantiles, then the bias corrected

% = Ft (Fpr () 3)

precipitation value is the historical valueuainultiplied by the model-predicted changeiat
evaluated as a ratio. In fact, Li et al. (2010}his for a small number (~0.3%) of grid points that
otherwise are “problematic” when bias correctingggpitation additively, although in the
context of their study they did not explore the licgtions of Eq. 3 for preserving a model-
predicted future precipitation change. Note thatEgannot be applied at quantiles where there
IS no precipitation, in which case the denominatromes zero. In this event we simply set the
model-predicted change ratio to 1.

The treatment of zero-precipitation days is an irtgu consideration for regional
climate change (Polade et al. 2014). We calculdbeation-specific zero-precipitation threshold
for the GCM, 1, such that applying makes the model’'s number of zero-precipitation days
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match observations over the historical period. Bpedly, 7= Fgn(Qmay Wheregmayis the largest
guantile at whichF¢,(gmax) = 0. We requira >= 0.01 mm/day to avoid the possibility of very
small denominators in Eq. 3. Current GCMs tendrezipitate too frequently, often at daily
amounts above 0.01 mm, so this limit is rarely kech The GCM-predicted future fraction of
zero-precipitation day< , is calculated usingwith the GCM'’s original (non-bias corrected)
future time series. The model data is then biasected, and the smallegj fraction of
precipitation values are set to zero. In most ciesneans that the GCM-predicted change in
fraction of zero-precipitation days is preservethi@ bias-corrected output. However it
sometimes happens that the bias-corrected futme=deries has a larger fraction of zero
precipitation days thafy, which is not a correctable bias since there is/ap to know which
zero-precipitation days should be set to have dipevalue.

Model-predicted changes in mean precipitation (eatald multiplicatively) are generally
not preserved using Eq. 3 for the same reasons ati@ve for the standard additive EDCDFm
technique (i.e., changes in the quantile at whiehnhean falls). Although this results in
negligible errors in temperature, precipitationrisitions tend to be more skewed than
temperature distributions and GCMs can show sicguifily varying predictions of future change
as a function of quantile. Between these two e$fég. 3 can still alter model-predicted changes
in mean precipitation in some seasons and locations

The model-predicted mean precipitation change (atat as a ratio) over the bias
correction period can be preserved exactly if thetthand side of Eq. 3 is multiplied by a

correction factoK:

K = (x) /(%) (4)
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where brackets indicate time averaging over alkdayhe appropriate month (since we are
implementing bias correction separately for eacntimo I.e.,K is the ratio of the mean change

in the original GCM to the mean change in the b@msected GCM. We call the combination of
Egs. 3 (the ratio-preserving formulation of EDCDFeny 4, together with the treatment of zero-
precipitation days described above, the PresRatdmarection method because it “preserves the
ratio,” specifically the mean GCM-predicted futymecipitation change evaluated as a ratio. In
application the future / historic ratios are ficetmputed at each quantile, then those ratios are
scaled byK. Figure 1d includes results from PresRat (puripke) lapplied to the synthetic
example data as well as the other methods, for aosgm.

The correctionsK) that PresRat requires to maintain the model-ptediprecipitation
change are second order, arising from change®ipdtcentile at which the mean falls combined
with differing model-predicted changes at differpatcentiles, and so tend to be modest. Figure
4 showsK for four different months averaged across all ZIMS. In any given month Eq. 3
tends to alter the model-predicted mean changedsythan 5% in the majority of the region
(white areas of Figure 4); in most other locatitms mean is changed less than 20% (light and
dark green and yellow areas). In some places thaggecially the dry regions of California in
summer, PresRat requires substantial correctiopseserve the model-predicted mean change.

By construction, PresRat preserves the model-pietiimean precipitation change
exactly in CCSM4 (bottom row of Figure 3). Althouiglis a minor effect, it is also worth noting
that PresRat allows the model to reproduce therebdéistorical mean in some cases where the
GCM has more zero-precipitation days than obsenvetthis situation the other bias-correction
techniques (QM, EDCDFm, and CDF-t) are unable &s@rve the historical mean value since

there is no way to know which of the too numercer®zprecipitation model days should be
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assigned a positive precipitation value (see se@it). This tends to be a minor effect because
in this situation it is the lowest precipitationydahat the GCM is missing, and since
precipitation tends to have a strongly skewed ithistion (especially in dry areas) the smallest
precipitation days contribute little to the monthtgan. Even PresRat cannot maintain the
model-predicted change if in the future period ¢hiera month with no precipitating days to
correct, which does occur in some models for paldity dry locations and months.

PresRat generally preserves mean changes in gegicpiwhile also allowing for
changes in the distribution. However a possibleceamis that the multiplicative factéris
calculated to preserve the GCM-predicted mean ahbngalters the bias-corrected future
values at all quantiles, not just the mean (i.eesRat does not preserve the model-predicted
ratio at each quantile aft&ris applied). The fact that typically alters the values by less than
5% (Figure 4) should allay this concern to someaekedut it is still worth checking explicitly.

An underlying uncertainty is that there is no gindiorward approach for evaluating the
correctness of future distributions of climate aates. Using changes over the historical period
is possible but has the drawbacks noted in Mauréaerce (2013). As a practical matter we
compare future extreme precipitation values dewddpy PresRat to those from QM, CDF-t,
and EDCDFm. We cannot determine whether or notlisteibutions produced by PresRat are
correct just by comparing them with the distribongmf other methods, but it is useful to know
how the methods compare.

Figure 5 shows how often each of the bias corractiethods (QM, CDF-t, EDCDFm,
and PresRat) produces the smallest (rank 1) oesa(gank 4) 98 percentile value of future
(2070-99) winter (DJF) daily precipitation in eaafthe 21 global models. If the 4 bias

correction methods tended to produce equal valtidgea@xtrema, then on average each method
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423 would produce 25% of the values in each rank. Adiogity the values shown in Figure 5 are the
424  difference (in percentage points) from 25%, so flusitive values are seen where the bias

425 correction method is producing more values in thak than the other methods by the end of the
426 century and negative values are seen where theothetlproducing fewer values of that rank
427 than the other methods. This highlights the dongeasf any one method in contributing values
428 of a given rank. CDF-t and PresRat produce similanbers of rank 1 (smallest)®percentile
429 values of future winter precipitation, while EDCDRends to produce considerably more rank 4
430 (largest) 98 percentile values than the other methods. Presiaa surfeit of rank 2 (middle of
431 the pack) values compared to the other methodsleVagain emphasizing that we do not know
432  which of these representations is the most corvgetan nonetheless infer that an end-of-

433 century hydrological simulation using EDCDFm or Qs corrected precipitation is likely to
434 produce more frequent or severe winter floodinghevéhan one using PresRat. A similar

435 analysis for future summer (JJA) precipitationhewn in Figure 6; QM tends to show the

436 largest (rank 4) Q*Spercentile precipitation values and PresRat thallsst (rank 1) by the end
437  of this century. In other words, assuming thatrttuelel historical error at a given value is

438 preserved (as QM does) tends to lead to precipitatalues that are more extreme than is

439 consistent with the factor that the GCM indicates model precipitation will change by.

440 3.6 Multi-model ensembleresults

441 Since bias correction affects different GCMs difaty, it is useful to examine the effect
442  of bias correction on model-predicted changes aggeel across models. Figure 7 shows

443 projected changes (2070-99 relative to 1976-2008Rily maximum temperature after bias
444  correction minus projected changes in the origi@M, averaged across all 21 GCMs. It is

445 apparent that QM and CDF-t have systematic effsoten analysis of future temperatures
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would not be protected against the tendency ofthé&ss correction techniques to alter model-
predicted changes even if it used a relativelydagsemble of models. Some models show
alterations considerably larger than these mearegako using a small number of models with
bias correction is potentially risky. QM, in pattlar, exaggerates model-predicted winter
warming across much of the north-central U.S. andnishes summer warming through much
of the southeast. This provides justification fome implementations of QM (e.g., Wood et al.,
2004) to remove the GCM trend prior to bias coroecand replace it afterward. As outlined in
Maurer and Pierce (2013), QM’s modifications of €M trend are related to GCM
misrepresentations of variability in the historioadel run. CDF-t shows much smaller mean
changes, but they still can exceed 0.5 °C in saoations. EDCDFm, by construction, shows
very little alteration of mean model-predicted cjasin future daily maximum temperature.

Of course, when considering multi-model ensemberaging the mean result might be
near zero but the individual models could havergel@pread of values about zero. To determine
if this is the case, Figure 8 shows the RMS diffeee(calculated across the 21 GCMs) between
the original model-predicted future (2070-99) chamgdaily maximum temperature and the
change after bias correction has been applied.lafgsly confirms the interpretation of Figure
7; QM shows the greatest tendency to alter theraiignodel-predicted changes in daily
maximum temperature, and CDF-t has both a redyme@d of results (compared to QM) and a
mean closer to zero. EDCDFm shows essentially neaspbetween models.

A similar analysis for future (2070-99) changesla@ily precipitation is shown in Figure
9. In the multi-model ensemble average, QM, CDd&rtt EDCDFm all alter the mean GCM-

predicted future change in precipitation by momntB0 percentage points in some times and
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locations, although generally CDF-t imposes smaltemnges than QM and EDCDFm. QM has a
tendency to make the model-predicted changes weftévlaurer and Pierce 2013).

CDF-t tends to make forecast changes drier, f@amsthat can be understood in terms
of Figure 1c. To produce a point on the bias cdeckéuture distribution it is necessary that the
model historical value at the quantile being biasected fall within the range of observed
values, as indicated by vector (2) in Figure 1g.,Ef vector (2) were progressively moved to the
right in Figure 1c, it can be seen that no hisedn@lues greater than X=16 mm/day (the
maximum observed value in Figure 1c) could be baagected. In this event, following
Michelangeli et al. 2009, the correction used & found at the maximum valid historical value.
However the GCM precipitation simulations tend igpthy two attributes: 1) They over-predict
precipitation in dry areas, so the model CDFs hifesl to the right of the observed CDF (as
depicted in Figure 1c); 2) The most extreme préaifpn events increase preferentially more
than others (e.g., IPCC 2007, 2013). In thesetsius CDF-t tends to be forced to use the
maximum valid correction, which falls at a loweraguile, and so misses the preferential
increase in the very highest quantiles. Figuredhstthat this is only a modest tendency outside
of dry summer California/Great basin months, butidde a consideration for regional flooding
studies.

EDCDFm has mixed effects but makes the simulatstrasgly wetter in winter in the
Rocky Mountains and Great Basin, when much of tlameas receive the bulk of their annual
precipitation, as well as the upper Midwest. Ingg@hEDCDFm will make predicted
precipitation changes wetter in locations whereGi@M simulates a wetter climatology than
observed since a fixed model change (in the qugnsibeing applied to a smaller historical base

value. By construction PresRat has little effectr@model-predicted mean change in future
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precipitation, although the effect is not zerodantrast to the results for EDCDFm with daily
maximum temperature) because a few of the modetetlbave enough precipitating days to be
corrected in certain months. This is particulamgy@alent in California in July, where a number
of the GCMs have no July precipitation that caralbbered by the bias-correction scheme. The
RMS spread of results across models (Figure 10)shoughly comparable values for QM and
EDCDFm and nearly as much for CDF-t, while PrediRat much less spread. As found in the
mean results, the locations where PresRat does stual®l spread is due to occasional models

predicting too little precipitation in some montir fa correction to be applied.

3.7 Summary: preserving model-predicted mean changes

The QM and CDF-t bias correction methods genegrdtgr model-predicted mean
changes in daily maximum temperature and preciptaEDCDFm, however, effectively
preserves model-predicted changes in mean dailynmogix temperature. PresRat (which is a
new extension of EDCDFm to preserve ratios, adera-precipitation threshold, and implement
a correction factor) preserves model-predictedr&utinanges in precipitation (evaluated as a
ratio) as long as there exist precipitating daygheGCM simulation that can be corrected. This
is accomplished with only modest correction fac{generally less than 5%, the notable
exception being the very dry California summers)e €xtreme values produced by PresRat are
mostly consistent with the extreme values fromdtier bias correction methods, though it tends
to produce fewer of the highest™percentile values than EDCDFm (in winter) or QM (i
summer).

In summary, both temperature and precipitationbmEbias corrected using methods that
preserve global climate model-predicted future mereanges. Doing so would help minimize

confusion and inconsistent results between dowadaalgional climate simulations and global
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model analyses, such as represented by the IPQgas#2007, 2013). The advantage of this
approach over that taken in Wood et al. (2002),revitige trend is removed, bias correction
performed, and the interpolated trend re-introducethat the model-predicted changes

themselves can be downscaled rather than beingmslypolated GCM fields.

4. Frequency Dependent Bias Correction

4.1 Overview

The previous section examined the effect of biasection on GCM-predicted mean
changes at long time scales (decades). In thieege address more general question of what
model biases may be present across the gamut eg¢ates and how to address them. Quantile-
based bias correction methods such as QM, EDCDBH/-{Cand PresRat already alter the
variance spectrum of the GCM’s time series if dartpantile values do not appear at random
intervals in the time series, but rather prefesdiytiat certain frequencies. For example the
highest quantiles of California precipitation gealgrappear in winter, so the proportion of
variance in the annual cycle will typically be a#té by bias correction. However this effect is
modest, as will be shown quantitatively below.

The frequency-dependent bias correction methodloeeé here is designed to
systematically alter the shape of the GCM’s spectio better match observations without
changing the overall variance. As such, it is idehto be applied as an additional processing
step after standard bias correction has alreadystet] the overall variance.

Details are given in the following sections, bubnoad terms, the frequency dependent
bias correction proceeds as follows. First, théawvee spectra of the observations and model are

calculated. The model variance error as a funaiidnequency is then computed as the ratio of
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the spectral values, (model/observed). To cortexse errors the model time series is Fourier
transformed to frequency space, then the amplitdidee Fourier components are adjusted so
that the distribution of variance across frequenbietter matches observations. The Fourier
components are then inverse transformed back ititoeaseries.

Much of the following material is devoted to examgnthe result to make sure the
process improves the model simulation rather thegratling it. However, one caveat is that the
spectral approach used here does not considereinegtdependent biases in different seasons or
months, but instead only as a collective whole dlrerentire time period. This potentially means
that it is not feasible to expect a removal of bsaacross all timescales of interest by this

technique.

4.2 Spectral M ethodology

Since we bias correct the future model projectiar0-yr periods (section 2.3), the
PresRat method outlined in section 3.4 will preeenodel-predicted mean changes at periods of
30 years and longer in the future projection. Adaagly, when we consider frequency-
dependent bias corrections we need only includeost, periods from two days (the Nyquist
frequency given the daily model output) to 30 yea@tss interval will be further refined below
in light of our spectral analysis technique. Mopddicted changes at these frequencies can arise
from natural internal climate variability, anthragemic causes, or both.

Numerous techniques are available to compute vegiapectra (for a review, see Ghil et
al. 2002). Many of the newer methods have beenldeed to identify narrow-band signals
against a background of noise. However, in thiskwee are also concerned with the power in
the broad parts of the spectrum that might in ofipgrlications be considered simply “noise”.

This variability represents weather and climatetflations that affect hydrology and ecosystems
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across a wide range of time scales, so we seadalistic a simulation of these fluctuations as
possible. Accordingly we use relatively wide bandhivs in this work and employ the Jenkins
and Watts (1969) method of computing variance spexd the Fourier transformation of the
autocovariance function. We require at least 40aekyof freedom in the spectral estimates,
which given 30 years of daily data and a Parzemiagow, means truncating the
autocovariance function after 1020 lags (Jenkis\&atts 1969). Following the Jenkins and
Watts recommendations the number of frequencisstito twice the number of lags (2040), so
the first non-zero frequency corresponds to a pesio-11 yrs. Longer periods are unresolved,
and the frequency-dependent bias correction doeslteo their relative proportion of variance.
With over 2000 frequencies spanning from 2 daykltgears it is useful to reduce the
number of frequencies at which the model errooisected to avoid spurious over-fitting.
Accordingly, the frequency-dependent model erroescalculated in a reduced set of 100
frequency bins of equal width in the logarithm ifduency. This means that higher frequency
bins have multiple samples, as shown in Figurenth, more than 5 samples per bin at periods
shorter than ~80 days (purple lines). The binniregefore reduces the uncertainty in the spectral
estimates for periods shorter than ~80 days. Theage value of the spectrum in a bin is
estimated using monotonic cubic splines (Fritch @adson 1980) to avoid abrupt changes in
the estimate depending on whether a frequency pobdrely included or excluded from a bin.
Von Storch and Zwiers (2001) note the problemsiarpreting spectral plots on a
logarithmic frequency axis, since the displayeganeder the spectrum is no longer proportional
to the variance. It is possible to maintain theperrty of being a spectral density if the spectral
value is multiplied by frequency, or if the plottedlues are integrated (as opposed to averaged)

across constant widths of the logarithmic frequessdg. However these approaches change the
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angle of a plotted spectrum (for example, a whiecgrum is then no longer flat), which can be
confusing. To avoid this potentially misleadingisiion, values shown here are simply averaged
in frequency so that the spectra appear similartat is typically found in the literature (i.e., a

white spectrum is flat).

4.3 Frequency dependent model errors

Figure 12 shows maps of the observed (1976-20@%&)llition of variance in daily
maximum temperature across frequencies (labeled) @sjuivalent periods) and the multi-model
ensemble errors in representing this distributiothe same period. The left column shows
observations (% of total variance), the middle omtushows the multi-model mean error (%)
with respect to the observations, and the rightil@tumn shows multi-model RMSE (%; i.e., at
each point, the spread of values across the 21Is)odée frequency-dependent bias correction
is based on normalized spectra (spectral valuegdati\by the variance of the original time
series) so that it leaves the overall variancetared. Therefore at every location the values in
the left hand column summed across frequency biatals100%. For example, the top left panel
of Figure 12 shows that in the region from wesieeras north to western Kansas more than
10% of the total variance falls in the 2-10 daydamhile in the region immediately to the west
less than 4% does.

As expected, Figure 12 shows that the annual dateinates the daily maximum
temperature variability over almost all of the @aminous U.S., containing on average 62% of
the total variance. The exception is in locatiolosi@ the California coast, where shorter period
variability makes a much larger contribution to twerall variance than found elsewhere.

Reinforcing the notion that bias correction migkéfully be applied as a function of

frequency, the multi-model aggregate profile of mlagtrors of daily maximum temperature
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(middle column) varies considerably across thetsgle@nge. Over much of the domain there is
a tendency for models, on average, to allocatedkesee total variance to periods shorter than 3
months than is observed, particularly in the 189 band where the mean error is -9%. RMS
errors at periods shorter than the annual cycléyareally on the order of 10-15% of observed
variance in those frequency bands, which implies tihe mean error is relatively consistent
across the models. The proportion of variance énattmual cycle is represented with virtually no
mean error and a very small spread across models.

A deficiency in daily maximum temperature varialyilat periods shorter than the annual
cycle combined with an accurate representatiohefihnual cycle implies that periods longer
than the annual cycle must be receiving proportipneo much variance, which is confirmed by
Figure 12b. Variability that occurs at periods lenthan 30 months has, on average,
proportionately ~40% more variance than observed the spread across models is large, with
RMS errors of ~60%. However it should be kept imanihat the fraction of total variance
contained in these long time scales is quite s(wall% for all timescales longer than 30
months).

Figure 13 shows the same frequency-dependent amabiag daily precipitation. In
contrast to daily maximum temperature, over moshefconterminous U.S. the shortest periods
(2-10 days) contain the majority of the variance &werage, 62%). The exception is the wet
parts of the west coast, where 10-30 day and lopgeod variability is nearly as important and
the annual cycle contains > 7% of the total vaamasore than twice the average at that
frequency over the domain. The models as a graupttesimulate the short-period (2-10 day)
fraction of total variance reasonably well, witimadest (5-10%) mean bias towards too much

short-period variability along the west coast apger Midwest and too little around Texas,
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Oklahoma, and the Gulf coast. Figure 13b showsrtinatel-simulated precipitation variability at
periods of 30 months or longer accounts for an atously large proportion of the total
variance in the southeastern U.S., and an anontglssll proportion in the Pacific Northwest.
Rupp et al., (2013) also found that models overede temperature variance at timescales
longer than a year and underestimate precipitatioiance at timescales longer than a year in

the Pacific Northwest, USA. Disagreements acrossibdels are large at these longer periods.
4.4 Correcting frequency-dependent model errors

4.4.1 Method for frequency-dependent bias correction

To correct the frequency-dependent model biasssrae location, the rati®of the
model’s variance spectrum to the observed varigpeetrum is computed in each of the 100
logarithmically spaced frequency bins. This ste@nalogous to calculating the ratio of model to
observed values at each quantile in the cumuldisteibution function in the PresRat method.
Both spectra are computed over the historical dogy period, 1976-2005. The original model
time series is then transformed to frequency spadeto bias correct the model series, the
amplitude of the Fourier components are multipbgdr(f)~/? (the square root accounts for
the fact that variance is proportional to the atagk of the Fourier components squared). The
result is then transformed back to the time domastypical in statistical bias correction
techniquesy is calculated over the control period and appitedoth the control and future
periods. This assumes that the statistics of theéeherror as a function of frequency do not
change, but does not prevent a model from chantgrigture spectrum, either the overall
amplitude of variance or the distribution of vagaracross frequencies; it just means that any

model-predicted changes will be relative to theected model spectrum.
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4.4.2 Example results for daily maximum temperature

As noted above, standard bias correction techniguels as QM, EDCDFm, and CDF-t
alter the spectra of the time series they are eppd. Thus, in order to clearly demonstrate the
effect of the frequency-dependent bias correctipitdelf, we first present results using only the
frequency-dependent bias correction. We then stoombmed results using the frequency-
dependent bias correction applied in conjunctiotnwiandard bias correction.

Typical results of the frequency-dependent biagseotion using daily maximum
temperature from the CCSM4 GCM are illustratediguFe 14. The left column shows
normalized spectra of observations (red), the oaignodel (blue), and the model after
frequency-dependent bias correction (green dots)e&ch panel values are taken from the
location indicated by the purple ‘X’ on the inseaprand shown in the panel’s title (longitude,
latitude). The right column shows the ratio of thedel's spectral value to the observed value,
both before (blue) and after (green dots) the feegy-dependent bias correction is applied.

It is useful to define a root mean squared errarimappropriate for ratios of the spectral
values, which we designate as log-RMSE to diffeagatt from standard RMSE measures that
are appropriate to differences rather than ratiese = In g, then

log-RMSE = exp(y/(€?) — 1 5)
where the angle brackets indicate the mean ovdogaithmically spaced frequency values.
This expression treats equal ratios of error egua#., the model having twice the observed
variance produces the same error as the obsersdtaning twice the model’s variance), and the
final -1 makes a perfect result (model varianceaéqbserved, so= 1) give a log-RMSE of 0.

In general, if the model values are incorrect (e@rage across log-spaced frequencies) by a

factor ofo then the log-RMSE is — 1. These log-RMSE values are indicated in thieteglumn
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of Figure 14. When we refer to log-RMSE below, wedfically mean the model’s error in
reproducing the distribution of variance acrossjdiencies, as illustrated in Figure 14.

In some locations, such as the San Francisco régprrow of Figure 14), the ratio of
the model variance to observed exhibits a notdbfgegtop right panel) which indicates that the
model frequency errors are a systematic displaceaferariance, depriving high frequencies
and enriching low frequencies. At all locations tlegjuency-dependent bias correction improves
the model’s representation of how variance is ithsted across frequencies. The log-RMSE
typically drops by about a factor of 5 as a restithe correction. Some residual error remains
due to the approximate nature of corrections catedl using discretely sampled data on a finite

interval.

4.4.3 Example results for daily precipitation

Precipitation is more difficult to correct than teemature because it cannot have negative
values, which limits the adjustments that the fesguy-dependent bias correction can produce.
There are also many days with zero precipitatidmcivwe do not alter. In fact, to avoid
potential problems with exacerbating models’ dezztoblem, whereby they produce too many
days of light precipitation (Sun et al. 2006; D&08), we leave unmodified any model
precipitation values less than 1 mm/day. Parti¢yliardry areas this can leave few days for the
frequency-dependent bias correction to operate.upon

Precipitation results at a few example locatiorssirown in Figure 15 using CCSM4. It
is apparent that the frequency dependent biasatmmnes less effective at adjusting precipitation
than temperature. For example log-RMSE values datyease by a factor of 1.3 to 2 rather than
a factor of 5, as found for temperature. But altffothe corrections are relatively modest, they

result, uniformly, in the direction of decreasingael error and so are helpful.
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4.4.4 Multi-model ensemble average results

The multi-model ensemble average log-RMSE for daifkimum temperature is shown
in the top row of Figure 16 both before (left colnand after (middle column) the frequency-
dependent bias correction. The models systematideagree with the observations, particularly
along the west coast and in a band extending anth northern Texas. Before the frequency-
dependent bias correction the mean log-RMSE o aaéximum temperature error of 0.50
indicates that the models are, on average acrodgelgjdocations, and frequencies, off by a
factor of 1.50 (i.e., by 50%) in their represematof the variance in any particular frequency
band. After frequency-dependent bias correctiondgeRMSE drops to 0.11 (nearly a factor of
five decrease), indicating that the corrected nodet only off by a factor of 1.11 on average.

Results for daily precipitation are shown in thétdm row of Figure 16. The models as a
group tend to do worse in the Rocky Mountains aneaGBasin than in most other locations.
The mean log-RMSE for precipitation is approximathle same as for daily maximum
temperature. However, as expected for the reasves gbove, precipitation is less easily
corrected than temperature; the log-RMSE for preatipn drops by less than a factor of 2 after
the frequency-dependent bias correction. The pattelog-RMSE precipitation errors after
correction (Figure 16, lower center) primarily esfls the rate of occurrence of days with > 1
mm/day of precipitation (our threshold for correadf. The final results are best where the most
potentially correctable precipitation values existl worst where there are few correctable days.
However this does not completely explain the pajtdrere are residual differences that reflect
the seasonality and other aspects of the localptaiton distribution.

An important consideration is whether the frequedegendent bias correction makes the

representation of variance with frequency worsgome locations despite being better on
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average. This is addressed by the histograms uréit6 (right column), which show the
difference between each location’s corrected aiginal log-RMSE, pooled across every

location and every model. On average the frequelependent bias correction decreases the log-
RMSE for daily maximum temperature by 0.39, and thiaccomplished without making any
locations worse (no positive values are seen itigtegram). Even for precipitation, which

shows less improvement (decrease of log-RMSE b}) 0t@8m the frequency-dependent bias
correction than temperature, the correction vitjuallways decreases the log-RMSE (lower right

panel of Figure 16).

4.4.5 Magnitude of the corrections

It would be potentially troubling if the modificatis to the time series made by the
frequency-dependent bias correction were too ladggograms of the amplitude of the
corrections pooled across all models and locatwashown in Figure 17. Any day’s maximum
temperature is changed less than 3°C about 95%edfrhe, although rarely the changes can
exceed 4°C. The change in precipitation is less #@% or 1.5 mm dayabout 95% of the time,
although on rare occasion can be more than 50%6ang dayt. Since the frequency-
dependent bias correction operates on normalizectisp altering the distribution of variance
across frequencies without altering the overaliarare, the mean changes are approximately
zero for both temperature and precipitation.

Time series of daily maximum temperature before aftel the frequency-dependent bias
correction are shown in Figure 18, using year 200® the CCSM4 GCM as an example. For
plotting purposes the annual mean value (showherupper right part of the panel) has been
removed. The changes to the time series made Hyetipgency-dependent bias correction are

small compared to the synoptic and annual timedtataiations in the time series. Similar time
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series for daily precipitation are shown in Figlife Again, the modifications made by the
frequency-dependent bias correction are modest agedgo the daily variability. The relatively
constrained nature of the changes imposed by dogiéncy-dependent bias correction shows
that the improvement in spectral properties affdrdg the frequency-dependent bias correction

does not come at the expense of creating an ustiedime evolution in the final fields.

4.4.6 Combined effects of standard and frequency-dependent bias correction

In this section we explore the effect of frequedependent bias correction applied in
conjunction with standard bias correction. Only i&torical period is considered since we
compare to observations. This in turn restricts #malysis to QM since the other bias correction
methods differ from QM exclusively in the futurerioel.

Figure 20 shows the multi-model mean log-RMSE acadisthe climate models for daily
maximum temperature, both before any bias cornedtas been applied (panel a) and after
various combinations of QM and frequency-depentd&d correction have been applied (panels
b-e). QM by itself decreases the mean log-RMSEHnut 0.15, compared to the frequency-
dependent bias correction, which decreases the mgdRMSE by about 0.39. So although QM
helps make the models’ distribution of varianceoasrfrequencies closer to observed, the
improvement is considerably smaller than that addéyy the frequency-dependent bias
correction. Panels d and e show the results whplyiag the frequency-dependent bias
correction either before or after QM. On averagilits are slightly better when the frequency-
dependent bias correction is applied after QM caltiin the difference is small.

Figure 21 shows the same analysis for daily preipn. QM does a slightly poorer job
of improving the models’ depiction of variance agdrequency than seen when operating on

daily maximum temperature (a reduction in log-RMS8B.12 for precipitation vs. 0.15 for
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temperature). However, as noted above, the frequéegendent bias correction is not as
effective in correcting precipitation as temperat(log-RMSE drops by 0.21 for precipitation vs.
0.39 for temperature), although it is still prowsd@most twice the reduction in log-RMSE than
found in QM alone (0.21 vs. 0.12). As found forlganaximum temperature, slightly better
results are obtained when QM is followed by thediency-dependent bias correction rather than
the opposite order.

It was previously noted (Figure 16) that one déd@aspect of the frequency-dependent
bias correction is that no location’s agreemenhwhservations becomes worse as a result of the
method being applied. Figure 22 shows a similatygisafor daily maximum temperature (top
row) and precipitation (bottom row) using variowsrbinations of QM and frequency-
dependent bias correction. QM degrades the agradratmeen the model and observations in
how variance is distributed across frequenciebatit9.6% of the locations (pooled across all
models) for temperature and 23% for precipitatidhcourse QM was not designed to take into
account the variance spectrum of the simulatiothisois not a surprising result, but it is
nonetheless worth pointing out this previously eniified drawback of QM. When frequency-
dependent bias correction is followed by QM (bottoght panel), 4.5% of the precipitation
locations show worse agreement with observatioas the original model even though the mean
result is to improve the agreement. However wherotider of operations is reversed, so that
QM is followed by frequency-dependent bias cormttonly 1.3% of the precipitation locations
show a worse agreement with observations than fautite original model and no locations
show a worse agreement for daily maximum tempegaiiese findings, along with the results

from Figure 20 and Figure 21 that show a smalldmuisistent superiority when applying QM
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before the frequency-dependent bias correctionthareeason we perform the operations in this
order.

Although these results show that it is better fohathe frequency-dependent bias
correction after QM, a point of concern is whaeeffthis might have on the quantile matching
bias correction that QM performs. Does the freqyedependent bias correction significantly
degrade the correspondence between modeled andetsgiantiles that QM imposes? This is
evaluated in Figure 23, which shows quantile-queupliots comparing the quantile at which a
value falls in the observed distribution to thempila at which the same value falls in the
models’ distributions. Plotted values are poolewss all models and locations. If the models
had a perfect representation of the observed loligion, then all the model values would fall
along a straight line with slope of 1 (dashed greenin Figure 23). The box and whiskers in the
figure show the distribution of model values thiag Bound for a given observed quantile. For
example, the upper left panel of Figure 23 shdwas the median (0.50 quantile) observed value
of daily maximum temperature is, in the mediannidat the 0.55 quantile in the models, so the
models as a group have a slight cold bias relatitee observations. Half the time the observed
median value is found between the 0.50 and 0.6atdean the models; and 90% of the time the
observed median value is found between the 0.4®attdquantile in the model. 5% of the time
the observed median value falls either below td& Quantile or above the 0.70 quantile in the
model.

Figure 23 shows that, viewed across their CDFsprtbéels do better simulating the
distribution of daily maximum temperature than ppéation; at least 25% of the models
simulate the observed quantile of daily maximumgerature correctly, no matter what

observed quantile is considered. For precipitatiowever, notably less than 25% of the models
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manage to simulate the observed percentile coyrattjuantiles < 0.5, and at the lowest quantile
plotted less than 5% of the models are able tolsit@ihe observed percentile. The positive
precipitation bias at low quantiles is consisteithwhe models’ drizzle problem.

For our purposes, the left two columns of FiguresBBws that the frequency-dependent
bias correction does not systematically alter tiegps of the model distributions, which is by
design since the method is intended to leave tkeatlwariance unchanged. When QM is
applied, either before frequency-dependent biascton or after (right two columns of Figure
23), the agreement between observed and modeladilgaas quite good. This is an outcome of
QM by construction, and the frequency-dependers tiarection changes that result only a
little.

Overall we conclude that the frequency-dependeat borrection does not inflict
additional problems to the resultant adjusted modgbut. Furthermore, it is useful to apply
since it increases the average agreement betweabserved and modeled distribution of
variance across frequencies without degrading gheeanent at any location. It accomplishes
this with relatively small and symmetric correcsoftypically < 3°C or 2 mm/day) without
imposing spurious behavior in time or diminishihg agreement between modeled and observed

guantiles that QM imposes.

5. Summary and Conclusions

GCMs generally produce biased simulations of véembuch as temperature and
precipitation. It is necessary to remove thesedsid®efore using the model-simulated fields in

applications that have non-linear sensitivitiebittses, such as land surface or hydrological
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modeling. Accordingly, a bias correction step ienfperformed on GCM fields before use in
such applications.

One problem with bias correction methods such asitije mapping (QM; e.g., Wood et
al. 2002) and the CDF-transform method (CDF-t; Mialmgeli et al. 2009) is that they alter
GCM-predicted mean future changes, evaluated 2820-99 relative to 1976-2005.
Compared to the original changes produced by aenalole of 21 GCMs with the RCP 8.5
anthropogenic greenhouse gas and aerosol sce@Miproduced warmer future daily
maximum temperatures by up to 2°C across mucheofiiper Midwest, California coast, and
Northern Rockies in January, and cooler daily maxmiemperatures by up to 2°C across much
of the southeastern part of the U.S. in July. CBRdwed smaller alterations of up to 0.5°C, but
they may still have consequence because they tepersist throughout the year. When
evaluated as a multiplicative change in preciptatQM and the equidistant CDF matching
method (EDCDFm; Li et al. 2010) produced wetterditbans than projected by the original
global models by up to 30 percentage points adresapper Midwest and Northern Rockies in
January, while CDF-t produced drier conditions pyta 20 percentage points in the Southwest
U.S. in summer. These changes are large enoughke enpractical difference in the results of
climate impact studies, which is problematic givleeir widespread usage and because the
magnitude of changes imposed through bias correctia be of the same order of magnitude as
the model predicted changes by the end of the periloreover, because analyses of the
projected climate changes in the original GCMsvardespread (e.g., IPCC 2007, 2013),
alterations to the GCM trends may lead to incoeaiges and confusion in bias-corrected

regional studies.
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In the first part of this work we have demonstraenethodology that uses existing and
modified techniques to maintain model-projectechelie changes even when bias correcting the
global model data.

Under the assumption that bias correction showdd@we the model projected future
change, EDCDFm works very well for temperature getpns. For precipitation projections we
have introduced an extension to EDCDFm that we tr@sRat, which “preserves the ratio” of
future changes rather than the difference, incladesro-precipitation threshold that makes the
modeled number of zero-precipitation days matclentagions, and adds a correction factor that
is typically < 5%. PresRat generally maintains migatedicted changes in daily precipitation.
However none of the bias correction techniquessRaeincluded, can preserve the model-
predicted precipitation change in cases whereilmtaithat are so dry there are insufficient
precipitation days to bias correct (which is rémat, does happen in some models during the dry
months).

In the second part of the study we extend our examan of model biases from trends to
the more general issue of the models’ representafioariance across a range of timescales, and
introduce a frequency-dependent bias correctiomaakethat can address inaccuracies in the
GCM simulations. A comparison with observationswséd that as a group, the 21 GCMs
apportion too little variability of daily maximunemperature to times scales between 10 and 90
days and too much to time scales longer than 3Gmomhe models’ simulation of daily
precipitation variability was more mixed, but ahgptimescales (> 30 months) they show more
variability than observed in the Gulf coast regao less than observed in the Pacific

Northwest.
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We showed that the models’ simulation of varianca éunction of frequency can be
improved by a frequency-dependent bias correctdmch is implemented as digital filter in the
frequency domain. Before the frequency-dependes ddrrection the model simulations tend to
err in their estimate of the frequency distributairtotal daily maximum temperature variance
by a factor about 1.5, RMS averaged across logespiequencies. After the frequency-
dependent bias correction the RMS error dropsfaatar of 1.11. Precipitation cannot be
corrected as easily as temperature since locatypinsally have numerous zero-precipitation
days, but the frequency dependent bias correctitdecreases the RMS error from a factor of
1.49 to 1.28. These improvements are accomplistiddratatively modest alterations to the
original values, typically < 3°C in daily maximumnperature and < 1.5 mm/day in daily
precipitation.

The frequency-dependent bias correction improvesrtbdels’ simulation of variance as
a function of frequency about twice as much asdstethbias correction. Additionally the
frequency-dependent bias correction makes no mtaivorse, while standard bias correction
degrades the simulated distribution of variancesgfrequencies at about 9.6% of the gridpoints
(pooled across all 21 global models) for daily nmaxm temperature and 23% for precipitation.
Applying the frequency-dependent bias correctidmseguent to standard bias correction both
increases the models’ mean agreement with obsensasubstantially (better than either
technique applied alone) and reduces the fracti@egraded gridpoints to 0.0% for daily
maximum temperature and 1.3% for precipitation.

Important questions about bias correction remalis $tudy has not addressed whether
bias correctiorshould be applied at any particular location given thatlei-observational

disagreements are influenced by natural climat@agity, which can be large and affect climate
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897 means over years to decades (e.g., Maraun etX); P@ser et al. 2012). Likewise, it is not clear
898 if models should be bias corrected to a particopérod that tree ring or other paleoclimate

899 evidence suggests is atypical. Although theserdegdsting questions, in this work we have

900 followed the common practice of applying bias cotian to the GCMs at all locations to bring
901 them into agreement with a pre-selected recentattilngical period.

902 Another problem with bias correction techniques thaot addressed here is that a

903 model with a seasonal cycle of precipitation teagrieatly different from observations might not
904 preserve the GCM-predicted annual change evehptretipitation trends are preserved at the
905 monthly time scale. This reinforces the fact tHdtaugh bias correction can help make the

906 statistics of temperature and precipitation fidhdsn a global climate simulation more like

907 observations, it is possible for some models inesoagions to produce such a poor simulation
908 that bias correction has little meaning. Even befmas correction care should be taken to ensure
909 that GCMs used in a regional climate impact stuajytuare the relevant physical processes to
910 begin with. For example, a GCM that lacks an EN$C€ecor seasonal monsoon flow can be
911 Dbias corrected and downscaled like any other madelthe result will have little meaning in

912 areas that are influenced by ENSO or monsoonal. flow

913 In the end, as global climate model results comtittube applied to investigate

914 phenomena that are sensitive to model biasesgbrasction will become an ever more

915 important step. The bias correction methods cedlinere can improve these simulations, giving

916 a clearer picture of future climate conditionsdorariety of applications.
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1056

Abbreviation Model sour cefinstitution

Accessl-0 Commonwealth Scientific and Industrial ResearchaDization
(CSIRO) and Bureau of Meteorology (BOM), Australia

Bcc-csml-1 Beijing Climate Center, China

Bnu-esm Beijing Normal University, China

CanESM 2 Canadian Centre for Climate Modelling and AnalySianada

CCsM4 National Center for Atmospheric Research, USA

ECSM1-BGC National Center for Atmospheric Research, USA

CNRM-CM5 Centre National de Recherches Meteorologiques,céran

CSIRO-Mk3.6.0 QCCCE & Commonwealth Scientific and Industrial Resh
Organization, Australia

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, PrincetoSAU

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, PrincetoBAU

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, Princeto8AU

INMCM4 Institute of Numerical Mathematics Russian Acadeh§ciences,
Russia

IPSL-CM5a-LR Institut Pierre-Simon Laplace, France

IPSL-CM5a-MR Institut Pierre-Simon Laplace, France

MIROC-ESM Japan Agency for Marine-Earth Science and Techyolagd

MIROC-ESM-CHEM

National Inst. For Environ. Studies, Japan
Japan Agency for Marine-Earth Science and Technolmad

National Inst. For Environ. Studies, Japan

MIROC5 Atmosphere and Ocean Research Institute and Nsit.Har
Environ. Studies, Japan
MPI-ESM-LR Max Planck Institute for Meteorology, Germany
MPI-ESM-MR Max Planck Institute for Meteorology, Germany
MRI-CGCM3 Meteorological Rsearch Institute, Japan
NorESM 1-m Norwegian Climate Centre
1057 Table 1. The GCMs used in this work and their oi¢jng institutions.
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Figure 1. Cumulative distribution functions (CDIe$)synthetic daily precipitation data
schematically illustrating how each bias correctioethod constructs the model’s bias corrected
future CDF (green dotted/dashed lines). The sdlid,lgrey, and red lines are the same in all
panels and show the observed (1976-2005), modeiriual (1976-2005), and model future
(2070-2099) CDFs, respectively. The example pogimdp corrected is X=30 mm/day, which
falls at the 0.56 quantile in the model future rifisttion (dotted orange line). a) Quantile
mapping (QM): starting at the point to be correctgvertically to the grey line (1),
horizontally to the blue line (2), and verticaltythe original percentile (3). b) Equidistant CDF-
matching (EDCDFm): at the quantile of the pointigecorrected, compute the offset from the
model historical value to the model future valag ¢then add\ to the observed value at the
percentile being corrected (1). ¢c) The CDF-tramaf@CDF-t) method; starting at the point to be
corrected, go horizontally to the grey line (1)ctically to the blue line (2), and horizontally to
the original value (3). d) Final results from albi&s correction methods (dotted/dashed green
lines), along with the PresRat method (solid pulipke) for comparison. Note that the X axis
uses a square root transformation and the Y axis as inverse error function (“probability

plot”) transformation.
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1076 Figure 2. lllustration of how bias correction cdreathe model-predicted future change

1077 in monthly-averaged maximum daily temperature, shéw July using the CCSM4 GCM. Left
1078 column: the observations, model simulation overttiséorical period (1976-2005; °C), and
1079 model error with respect to observations without laias correction (°C). Right part of figure:
1080 For each of the bias correction methods indicagedurtile mapping (upper row), EDCDFm
1081 (middle row), and CDF-t (lower row)) shown are thedel error with respect to observations
1082 over the historical period after bias correctios haen applied (°C), the model-projected future
1083 change (2070-2099) after bias correction usingriieated method (°C), and the amount that
1084 the bias correction method alters the original nipdedicted change (°C).

1085

1086 Icirl/compare_BC_methods_v3_tasmax_ccsm4.R.ps
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Figure 3. lllustration of how bias correction cdteathe model-predicted future change
in precipitation, shown for December using CCSMdftlcolumn: the observations, model
simulation over the historical period (1976-200%nfday), and model error over the historical
period with respect to observations without any lmarrection (%). Right part of figure: For
each of the four bias correction methods indicasadwn are the model error with respect to
observations over the historical period after loi@asection has been applied (%), the model-
predicted change in future (2070-2099) precipitafield after bias correction with the indicated
method (%), and the amount that the bias correctietihod alters the original model-predicted

change in precipitation between the future andhtstl period (percentage points).

[cirl/cmip5_regrid/compare_BC_methods_v3_ccsm4.R.ps

52



January

50 , 50
45 45
40 40
35 35
30 30
25 25

-120 -110 -100 -90 -80 -70 -120 -110 -100 -90 -80 -70
[ ] I I —— ] [ [ ) I N N — ]
0.2 05 08 090951051112 2 &5 02 05 08 09098510511 12 2 &

July October
50 50
45 45
40 40
35 35
30 30
25 25
-120 -110 -100 -90 -80 -70 -120 -110 -100 -90 -80 -70
[ I — — [ T I — — | I [
1098 02 05 08 090951051112 2 5 0.2 05 08 0909510511 12 2 5
1099 Figure 4. Correction factor, for the PresRat scheme that are necessary terpees

1100 model-predicted changes (2070-2099 vs. 1976-20@0&)an precipitation, illustrated for four
1101 months. Values are averaged across 21 GCMs. Waiges are within 5% of unity.

1102
1103 plot_presrat_factors_allmods.R.gif

1104

53



1105

1106
1107
1108
1109
1110
1111
1112

1113
1114

quantmap rank 1 quantmap rank 2 quantmap rank 3 quantmap rank 4

_mean: —10.81 | 54 . mean: -7.47 | 5 mean: 1229 | s 3 msa'm; 6.10
) .'F- & -In '-'.|EI'I.-|';- a - ' . -i‘ o . 'r'
oyhi o S b Tal e I o oMt e
- e o = " o - - . 5 i 'l’l ? "
1 1 i 40 » . A i 4an " 40 o b "
_ N : r,a"' ot Hys 1;;.5_ 1 .,_'.{rr' e
i a5 of 1 K as 35 ;
L L] g ' d . L]
: 30 : 1 30 ’ 30 . .
a5 25 25
80 -7 _12 —4 807 _12 =] _7 _12 =] 80 7
60 40 -20 0 20 40 60 -60 -40 20 0 20 40 60 -BO -40 20 0O 20 40 60 -60 —40 20 O 20 40 60
cdft rank 1 cdft rank 2 cdft rank 3 cdft rank 4
50 i i n:}san 8.54 saf . mean: 1.59 50| a1 mean: —4.85 | 55 maan 527
IR o P i L o R a5 ’:‘r
a) LA - 40 Y aof WO : ap *
yee % . : . :
35| & s . i asf o R a5 LR Lo 35
1) | S i 1
30 . 30 : r R 30 30 L*.
25 : 25 o5 25
_12 -1 80 -7 _12 = 807 _12 =1 80 7 12 -1 80 7
60 40 -20 0 20 40 60 -60 -40 20 O 20 40 60 -80 40 -20 0O 20 40 G0 -60 40 -20 0 20 40 &0
edcdfm ranlc 1 edcdfm rank 2 edcdfm rank 3 edcdfm rank 4
50 -B.268 | 5 mmnqqm 50 . mean:0.18 50 mean: 16.10
||.r L, .
+ i v i
:= 45 | 45 i| 45 )
“ E.I. .. 1 "ﬁJ' .-* E r'f'"- _ s . d'_.
40} | 40 ol ¥ iy « el sof§ s )
35 35 3[R T T : L -
= "
30 ) 30 L 30 . 30 ' !
‘ J
25 25 25 25
_120 -100 80 70 120 —100 —B0_—70 _120 100 —80 70 120 —100 80 70
- L
60 -40 -20 0 20 40 60 -60 -40 -20 O 20 40 60 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 &0
presrat rank 1 presrat rank 2 presrat rank 3 presrat rank 4
50 = mean: 8.63 50 4 4. dmean:1581 | 5o . .mean:-7.82 | 5, i mean: -16.92
y s e 'l h 3 "
asfh o R 45 . :"'?‘ g ﬁ]""o_"?"':_' | =i as| ' #f
o W " L ] [ " 0 0 X
aof |-;‘n ‘Ul ol TR ] 40 .*.5‘_1-5-; o A 4p N
aolllet | ety i, asfl e 35 : e ao|le " I CE & 5 3
LAY o . e o
30 & F 30 a0 i a0 o
25 : 25 A 25 25

—120 —100 -B80 70 —120 -100 B0 70 —120 -100 80 -70 —-120 — 100 -80 70
=60 =40 =20 O 20 40 60 -80 =40 -20 O 20 40 60 -60 -40 =20 O 20 40 60 -60 =40 =20 O 20 40 B0

Figure 5. Percent of the 21 GCMs in which thegatikd bias correction method (rows)
produces a winter (DJF) 8%ercentile daily precipitation value of the indiarank (columns;
1=smallest value across the bias correction methdargest). Plotted values are relative to
25%, which is the expected value assuming all 4 boarection methods produce extrema of
equal magnitude. Yellows and reds show where acpé&at bias correction method produces
more values of the indicated rank than expectezkrgg and blues show where it produces less

values of the indicated rank than expected.
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between the original model-predicted future changiaily maximum temperature and the

model-predicted change after bias correction has agplied.
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(percentage points), shown for 4 months (rows)&hbths correction methods (columns). Values

are ensemble averaged across all 21 GCMs.
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Figure 10. As in Figure 9, but for the RMS diffecer(percentage points).between the

original model-predicted future change in dailygypéation and the model-predicted change

after bias correction has been applied.
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Figure 13a. As in Figure 12a, but for daily prepon. Figure continues.
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Figure 13b, continued.
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1162 correction (green dots and line), taken at thetlonandicated by the purple cross on inset map,
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1167 Figure 15. Same as Figure 14, but for daily préaign.
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Figure 16. For daily maximum temperature (top ram)l precipitation (bottom row), the
multi-model ensemble average log-RMSE in simulatiregobserved distribution of variance
across frequency, both before the frequency-deperui@s correction (left column) and after
(middle column). Right: histograms of how the fregay-dependent bias correction changes the

log-RMSE, taken over all models and all locations.

/cirl/cmip5_regrid/get_rmse_all_models.R
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Figure 17. Histograms of how much the frequencyedeent bias correction alters the
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given both as the fraction change (%) and abschdé®ge (mm/day). Results are shown for all
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1183 Figure 18. Example one-year time series of dailximam temperature at the location
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Figure 20. Multi-model ensemble mean log-RMSE faitydmaximum temperature. a)

the multi-model ensemble average value before @as/dorrection has been applied. b) With

only quantile mapping (QM) applied. c) With onlgfluency-dependent bias correction (FDBC)

applied. d) With QM applied first, then FDBC. e)tWFDBC applied first, then QM.

get_rmse_all_models_bc_srs_both_v2_presentation.R
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1202 Figure 21. As in Figure 20, but for daily precipibs.

1203
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1205 get_rmse_all_models_bc_srs_both_v2_presentatios.R.p
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Figure 22. Histograms of the change in log-RMSElier models’ simulation of the
variance spectra of daily maximum temperature (twp and precipitation (bottom row) when
the indicated bias correction method is applied.. Qivantile mapping. FDBC: frequency-
dependent bias correction. Also indicated in eantepare the mean value and percent of values

greater than zero. Values are pooled over all nsoaied locations.

get_rmse_all_models_bc_srs_both_v2_presentatiais.Rips
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1215 Figure 23. Quantile-quantile plots showing how vile GCMs simulate the distribution
1216 of daily maximum temperature (top) and daily préeigpon (bottom), both before (left column)
1217 and after various combinations (described in Fidgi@eof quantile mapping (QM) and
1218 frequency-dependent bias correction (FDBC). In gatel the dotted green line shows a 1-to-1
1219 relationship, which would be perfect agreement betwthe model and observations. The box
1220 and whiskers show the distribution of model quantdlues as indicated in the legend, pooled
1221 across all models and all locations. Values arainbtl from the control period, 1976-2005.
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1223 get_rmse_all_models_bc_srs_both_v2_presentatiorR QM.
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