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Abstract 23 

Global climate model temperature and precipitation fields need to be corrected for biases 24 

relative to observations before they can be used for climate change impact studies. Three existing 25 

bias correction methods, and a new one developed here, are applied to daily maximum 26 

temperature and precipitation from 21 climate models to investigate: 1) How bias correction 27 

alters the climate change signal of the original model; 2) How different methods affect model 28 

biases in the simulation of variance as a function of frequency.  Quantile mapping (QM) and 29 

cumulative distribution function transform (CDF-t) bias correction can significantly alter the 30 

signal of change from the original climate model, with differences of up to 2°C and 30 31 

percentage points for monthly temperature and precipitation, respectively. Equidistant quantile 32 

matching (EDCDFm) preserves model-predicted changes in daily maximum temperature, but 33 

alters model-predicted changes in precipitation by up to 30 percentage points in some locations. 34 

An extension to EDCDFm termed PresRat is introduced, which generally preserves the original 35 

model-predicted changes in precipitation by operating on ratios instead of differences, using a 36 

precipitation threshold to make the fraction of model zero-precipitation days match observations, 37 

and incorporating a final correction factor.  Additionally, a frequency-dependent bias correction 38 

method is introduced that is twice as effective as standard bias correction in reducing errors in 39 

the models’ simulation of variance as a function of frequency, and (unlike standard bias 40 

correction) does so while making very few locations worse. 41 

 42 
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1. Introduction 43 

Global climate models (GCMs) are being used to explore an ever widening set of 44 

problems, some of which are sensitive to biases in the model simulated fields (IPCC, 2007). For 45 

example, daily precipitation biases can have a detrimental effect on hydrological simulations due 46 

to the non-linear nature of runoff; a moderate amount of precipitation generates little runoff if the 47 

soil is able to absorb the moisture, while doubling the precipitation might exceed the moisture 48 

storage capacity of the soil and generate much more than twice as much runoff. This non-linear 49 

relationship becomes more extreme in arid regions (Wigley and Jones, 1985), intensifying the 50 

sensitivity of runoff to GCM precipitation biases. Likewise, significant biases in surface 51 

humidity and evapotranspiration can arise from relatively small temperature biases due to the 52 

nonlinear nature of the Clausius-Clapyron equation. Unfortunately, the detrimental impacts of 53 

climate model biases on a non-linear system are not straightforward to remove. 54 

For this reason hydrological simulations generally bias correct GCM output fields before 55 

they are used. Corrected variables include temperature and precipitation, and sometimes other 56 

relevant quantities such as downward solar radiation, humidity, or wind speed. Bias correction is 57 

often an integral part of a downscaling scheme that takes account of large scale GCM biases as 58 

well as topographical and other effects that operate at a finer scale than can be resolved by a 59 

GCM (e.g., Wood et al. 2002; Maurer et al. 2010). Here however we consider the bias correction 60 

step alone. Maraun (2013) has pointed out that bias correction is most straightforwardly applied 61 

on a spatial scale that is near the original GCM’s spatial resolution, so we restrict our attention to 62 

bias correction on a grid commensurate with the original GCMs. 63 

One common form of bias correction is quantile mapping (QM; e.g., Panofsky and Brier 64 

1968; Wood et al. 2002; Thrasher et al. 2012), which adjusts a simulated climate variable (e.g. 65 
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temperature or precipitation) at a given location by mapping the quantiles of the simulated 66 

distribution onto the quantiles of the observations at that location.  QM has been widely applied 67 

to climate model output over the U.S. (e.g., Maurer et al. 2007, 2014) and globally (Thrasher et 68 

al. 2012). QM alters both the model’s mean and temporal variability, bringing them into 69 

agreement with observations over some common historical period. Gudmundsson et al. (2012) 70 

evaluate different ways of implementing QM and find that relatively straightforward non-71 

parametric methods, such as used here, perform well compared to more complicated schemes. 72 

Previous studies have shown that QM tends to alter the original GCM’s projected trend 73 

(Hagemann et al. 2011; Pierce et al. 2013; Maurer and Pierce 2013). Whether this is a desirable 74 

feature is a research question not addressed here. However, this property certainly engenders 75 

confusion and inconsistent results, for example between bias corrected regional climate studies 76 

and GCM results assessed by the IPCC (2007, 2013). If a climate model has too much variability 77 

then QM tends to reduce variability on all timescales, suppressing the original trend. If the GCM 78 

has too little variability, QM tends to increase the trend along with variability on shorter 79 

timescales. As bias correction is a purely statistical method it fails to discriminate between the 80 

physical processes determining trends associated with anthropogenic forcing and shorter-term 81 

fluctuations associated with natural internal climate variability. From this perspective there is 82 

little justification for allowing bias correction that primarily addresses problems on synoptic, 83 

seasonal and annual timescales to change the trend as well. 84 

Some previous schemes have addressed the problem of bias correction altering GCM-85 

projected trends. For example, the BCSD method (Wood et al. 2002) removes temperature trends 86 

over the period to be downscaled, bias corrects and then downscales the anomalies to a fine grid, 87 

then adds back in the original GCM trend fields interpolated to the fine grid. Although 88 
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straightforward and useful, this approach has the drawback that the final trend is, to first order, 89 

merely the interpolated GCM trend. This is confusing to end users who might reasonably expect 90 

that the downscaled trend will reflect more than simply the interpolated GCM trend, and means 91 

that the spatial structure of the trend is not necessarily commensurate with the spatial structure of 92 

the daily, monthly, or annual variability. In this work we address this limitation by constructing a 93 

bias correction method that retains the model-predicted change in the first place. The bias 94 

corrected fields can then be downscaled, and the final trend in the downscaled fields will be 95 

affected by the downscaling process rather than being independent of it. Pierce and Cayan (2013) 96 

addressed this issue by partitioning their future model runs into 30-yr segments (2010-2039, 97 

etc.), downscaling each segment with respect to its own climatology, then separately 98 

downscaling the global model predicted change in climatology in each segment and adding it 99 

back in. This preserves model changes on timescales longer than 30 years but allows shorter 100 

timescale changes to be bias corrected. The work here is more widely applicable since it is a self-101 

contained bias correction method that preserves model-predicted changes without reference to 102 

how subsequent downscaling handles the trend. As such it is potentially applicable to 103 

downscaling methods where separately downscaling the model-predicted change is not desirable 104 

or viable. 105 

Addressing the trend is not the only issue relevant to climate impact studies. The 106 

approaches used in BCSD and by Pierce and Cayan (2013) treat the trend differently from other 107 

timescales during the bias correction process. Yet a GCM may have too much variability on, for 108 

instance, synoptic timescales of 2-10 days but too little variability on the annual timescale. 109 

Neither a simple quantile based bias correction nor the approaches noted above address this 110 

problem. Misrepresentation of variance as a function of frequency could influence a simulation 111 
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of heat waves or flooding events, while distortions in the relative importance of synoptic scale 112 

versus interannual variability could affect agriculture and ecosystems. Inaccurate partitions 113 

between short- and long-timescale precipitation variability could affect simulations of droughts 114 

and reservoir storage since the hydrological and ecological result of a given amount of annual 115 

precipitation varies greatly depending on whether the precipitation is delivered equally 116 

throughout the year or very unevenly, with a strong contrast between wet and dry seasons. 117 

While the CMIP5 GCM simulations appear to have improved in these regards relative to 118 

prior simulations, such biases can still be substantial (Sillmann et al. 2013). Lower frequency 119 

variability in the climate system, such as El Niño-Southern Oscillation (ENSO), with an 120 

observed period of 2-7 years, are also imperfectly simulated by GCMs (e.g., Bellenger et al., 121 

2013; Collins et al., 2013), as are the teleconnections that can drive regional precipitation and 122 

temperature variability (Sheffield et al., 2013). Since natural variability in observations and 123 

historical GCM simulations is not synchronized (e.g., Eden et al., 2012), where regional climate 124 

is influenced by low-frequency variability the biases in GCM climate output also can be 125 

expected to mimic this natural variability, which has been noted in GCM climate simulations 126 

over the U.S. (e.g., Maurer et al., 2013). A correction of GCM output to account for biases in 127 

variability on different timescales is warranted where impacts are sensitive to this variability, and 128 

has not yet been attempted. 129 

Our first goal is to document how existing bias correction schemes alter the projected 130 

climate changes obtained from GCMs. We then propose a method that preserves the model-131 

projected changes. Third, we document model biases as a function of frequency so that the 132 

locations and extent to which this is a problem in current state-of-the-art GCMs can be 133 

understood. Ault et al. (2012) examined model biases at the interannual and decadal timescales, 134 
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however we find that bias correction is sensitive to misrepresented variability on shorter 135 

timescales as well. Lastly, we present a frequency-dependent bias correction scheme that reduces 136 

the problem of frequency-dependent model biases.  Maurer et al. (2013) have already 137 

demonstrated how model biases can vary over time and at extreme percentiles; this work adds to 138 

that list by showing that there are biases in variance at different frequencies.  139 

The rest of this report is structured as follows. In section 2 we describe the observed and 140 

model data sources. Section 3 addresses the problem of bias correction altering model-predicted 141 

changes, shows the extent to which this happens, and proposes a bias correction scheme that 142 

preserves model-predicted mean future changes. Section 4 addresses frequency-dependent model 143 

biases, documents the extent to which these are seen in the current generation of global climate 144 

models, and proposes a method for correcting these biases. The interaction of frequency-145 

dependent bias correction with standard bias correction is also addressed. A summary and 146 

conclusions are given in section 5. 147 

2. Data sources and time periods 148 

2.1 Global climate models 149 

We use daily maximum temperature and precipitation fields from 21 GCMs that 150 

participated in the Coupled Model Intercomparison Project, version 5 (CMIP5; Taylor et al., 151 

2012), listed in Table 1. The models used are all those available from the U.S. Bureau of 152 

Reclamation (USBR) archive of regridded (1°x1° longitude-latitude) CMIP5 global climate 153 

models at the time this work was performed (ftp://gdo-154 

dcp.ucllnl.org/pub/dcp/archive/cmip5/bcca; Maurer et al. 2014). Using the USBR regridded data 155 

has several advantages. It means we can build on work already done to obtain the raw climate 156 
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model fields and regrid the disparate climate model grids to a uniform representation. 157 

Additionally, starting from the same regridded data as the USBR archive uses ensures that later 158 

work using the bias corrected fields generated here can be directly compared to the existing 159 

USBR archive results. 160 

Historical data are available over the period 1950-2005. Future changes over the period 161 

2006-2099 are simulated using model output from representative concentration pathway 8.5 162 

(RCP8.5) experiments, which correspond to a relatively high emissions scenario (van Vuuren et 163 

al. 2011).  164 

2.2 Observations 165 

We used observed daily maximum temperature and precipitation data from Maurer et al. 166 

(2002), as updated through 2010 (available from 167 

http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html). The ultimate source 168 

of this gridded product is the NOAA co-operative observer weather stations, with techniques 169 

from the PRISM project (Daly et al. 1994) used to augment observed precipitation values in 170 

sparsely instrumented locations. The data are provided on a 1/8° x 1/8° latitude-longitude grid, 171 

which was aggregated to the same 1°x1° grid as the global climate model outputs. 172 

2.3 Time periods used 173 

The World Meteorological Organization (WMO) recommends that climatological 174 

normals be calculated over 30-year periods (a brief history of climatological normals can be 175 

found in Trewin 2007). The U.S. National Oceanic and Atmospheric Administration (NOAA) 176 

and National Climatic Data Center (NCDC) do the same (e.g., 177 

http://www.ncdc.noaa.gov/oa/climate/normals/usnormals.html). We follow this guidance by bias 178 

correcting GCM values to a 30-yr climatological record of observations, and furthermore by bias 179 
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correcting contiguous 30-yr segments of climate simulations individually.  For the future model 180 

projections we bias correct the periods 2010-2039, 2040-2069, and 2070-2099 separately. In the 181 

results shown below we focus on 2070-2099 as our “future” period. The climatological 182 

(historical) period is the last 30 years of the GCMs’ historical runs (1976-2005), used for both 183 

the models and observations. 184 

3. Preserving model-predicted mean changes 185 

3.1 Overview 186 

In this section we first evaluate the ability of three existing bias correction methods to 187 

preserve GCM-predicted future changes in daily maximum temperature and precipitation. We 188 

then propose a modification to an existing bias correction method for precipitation that preserves 189 

model-predicted mean future changes.  190 

Both temperature and precipitation are examined because they have different spectral 191 

characteristics and we evaluate their changes in two contrasting ways: as a difference with 192 

temperature (future – historical) but as a ratio with precipitation (future / historical). This is 193 

unlike the analysis in Maurer and Pierce (2013), which evaluated precipitation changes as a 194 

difference. However, it can be useful to evaluate precipitation changes as a ratio since GCMs 195 

may have significant biases in precipitation for a variety of reasons including the inability to 196 

adequately resolve topography and its effect on precipitation, for example often extending 197 

mountain precipitation too far into a rain shadow. In certain regions and seasons model biases 198 

may be several times the local observed climatology, making it sensible to consider model 199 

changes as fractional changes relative to the model’s own base climatology rather than as 200 

differences that are subsequently applied to observed climatology. 201 



10 
 

In the results shown here all the bias correction techniques are applied to daily values 202 

within each month (i.e., all days in January are bias adjusted together, then all days in February, 203 

etc.) to account for the cyclostationary nature of climate fields. More sophisticated treatments of 204 

this aspect of bias correction can be found in, for example, Piani et al. (2010), Abatzoglou and 205 

Brown (2011), and Thrasher et al. (2012). The historical period is 1976-2005 and the future 206 

period is 2070-99. 207 

3.2 Effect of quantile mapping on model-predicted changes 208 

In quantile mapping (QM; Wood et al. 2002) a raw GCM value x is converted to a bias 209 

corrected value �� according to 210 

�� = ����� 	�
����
																																																																			�1� 

where, using the notation from Michelangeli et al. 2009, F(x) is the quantile of value x in the 211 

cumulative distribution function (CDF), F-1(u) is the value in a CDF of quantile u, the first 212 

subscript is s for the station (observed) values and g for the GCM (model) values, and the second 213 

subscript is h for the historical time period. Thus, QM bias corrects a model value by changing it 214 

to the observed value at the quantile that the model value falls in the model’s historical 215 

distribution. The process is illustrated schematically, using CDFs of synthetic gamma 216 

distributions to mimic precipitation data, in Figure 1a and the caption thereof. Values off the end 217 

of the distribution are handled as described in Wood et al. (2002), i.e. by fitting a Gumbel 218 

extreme value distribution to the precipitation values and a Gaussian distribution to the 219 

temperature values. 220 

QM has difficulty bias-correcting precipitation if the GCM has more zero-precipitation 221 

days than observed since there is no obvious prescription to determine which of the model’s too 222 

numerous zero precipitation days should be assigned a non-zero value. If zero precipitation 223 
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remains on these days, the QM bias-corrected time series will have a smaller mean value than 224 

observed. However, in practice current GCMs generally have too few zero precipitation values, 225 

sometimes referred to as the drizzle problem (e.g., Sun et al. 2006, Dai 2006). 226 

QM’s tendency to alter GCM-simulated trends (as noted in the introduction) was not 227 

relevant to early applications of QM in hydrological modeling, such as in Wood et al. (2002), 228 

which developed and applied QM in the context of seasonal forecasting. When lead times are on 229 

the order of a year or less there is no reason to assume a significant shift in the model 230 

distributions over the forecast period, so the behavior of QM when the mean changes appreciably 231 

was not examined. This is consistent with the fact that Eq. 1 uses only historical information, not 232 

referring to the future model-projected distributions in any way. Despite this, QM has frequently 233 

been applied to climate change simulations where the mean does change appreciably, for 234 

example in multi-decade climate simulations that include anthropogenic changes in greenhouse 235 

gasses and aerosol forcing (e.g., Harding et al. 2012). 236 

The tendency for QM to alter model-projected changes is illustrated with the CCSM4 237 

GCM using July daily maximum temperature in Figure 2 and December daily precipitation in 238 

Figure 3. Bias correction is applied and model-predicted changes computed using a historical 239 

(1976-2005) and future period (2070-2099). Note that some fraction of variance over the future 240 

period might arise from the anthropogenically forced trend. The monthly average change 241 

between the future and historical periods is computed as a difference for temperature (future – 242 

historical) and a ratio for precipitation (future / historical). The top row (right panel) of Figure 2 243 

shows that QM decreases the model-predicted July daily maximum temperature change by more 244 

than 2°C in parts of Texas, Florida, and the Southeastern states, and increases it by a similar 245 

amount along the California coast. Similarly, Figure 3 shows that QM increases the model-246 
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predicted change in December precipitation by 30 percentage points over parts of the Northern 247 

Sierra Nevada and Rockies. Smaller changes can also be seen over the upper Midwest and 248 

Southeastern states. 249 

Recently, two bias correction methods have been developed that make specific choices 250 

for how model-predicted future changes should be treated: the CDF-transform method (“CDF-t”; 251 

Michelangeli et al. 2009) and equidistant quantile matching (“EDCDFm”; Li et al. 2010). We 252 

next examine these methods to determine whether they preserve GCM-predicted mean changes 253 

in temperature and precipitation. As in Maurer and Pierce (2013) we simplify by focusing 254 

primarily on the model-predicted change in median value instead of the mean, although it should 255 

be kept in mind that changes evaluated in different ways, for example by a least-square trend, are 256 

affected by the entire distribution rather than just the change in median, and trends may differ at 257 

different quantiles. 258 

3.3 The effect of EDCDFm bias correction on model-predicted changes 259 

EDCDFm (Li et al. 2010) bias corrects a future value x that falls at quantile u in the 260 

future distribution by adding the historical value at u to the model predicted change in value at u: 261 

�� = ����� 	�
����
 + � − �
��� 	�
����
																																																	�2� 

Where variables are defined as in Eq. 1 and the subscript f is for the future time period. The 262 

process is illustrated schematically in Figure 1b and the caption thereof. When bias correcting a 263 

historical run, so that Fgf  ≡ Fgh, Eq. 2 reduces to Eq. 1. By definition Eq. 2 preserves the GCM-264 

predicted future change in median value as long as the change is evaluated additively. EDCDFm 265 

does not necessarily preserve the model-predicted change in the mean (as opposed to median) 266 

since the quantile at which the mean falls can change if the shape of the distribution changes in 267 

the future. This does happen; for example, we find that for daily maximum temperature in the 268 
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CMIP5 models, changes in the quantile at which the mean falls can be 0.1 or more by the end of 269 

this century. However, for daily maximum temperature GCM-predicted changes are generally a 270 

weak function of quantile in the neighborhood of the mean value, so EDCDFm preserves the 271 

model-predicted change in mean value typically to within a few hundredths of a degree C (e.g., 272 

second row of Figure 2). Considering model uncertainty and natural variability this small 273 

discrepancy is irrelevant for our applications, but this should be re-evaluated if EDCDFm is 274 

applied to another climate variable that undergoes less uniform changes as a function of quantile 275 

or more exaggerated changes in the shape of the distribution, which could imply larger changes 276 

in the quantile of the mean. 277 

As formulated by Li et al. (2010) and seen in Eq. 2, EDCDFm is an additive bias 278 

correction method that preserves model-predicted differences (as opposed to ratios), which is 279 

appropriate for temperature. As expected, Eq. 2 does not generally preserve a GCM-predicted 280 

fractional changes, i.e., (future model value − historical model value)/(historical model value). 281 

At every quantile standard EDCDFm preserves the numerator of this ratio by definition, but in 282 

the process of bias correction substitutes the observed value for the historical model value in the 283 

denominator, changing the ratio. This is illustrated in the second row of Figure 3. When 284 

evaluated multiplicatively using precipitation, EDCDFm alters the model-predicted change by 285 

more than 30 percentage points over much of the North/Central U.S. This will happen 286 

particularly when there are both large biases and large changes in the upper quantiles of a 287 

skewed precipitation distribution. 288 
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3.4 The effect of CDF-t bias correction on model-predicted changes 289 

CDF-t bias correction (Michelangeli et al. 2009) finds a transformation that maps the 290 

GCM cumulative distribution function (CDF) of a climate variable in the historical period to the 291 

observed CDF, then applies that same mapping to the GCM’s future CDF, yielding: 292 

������ = ��� ��
��� 	�
����
�.																																																										�4� 

Here, Fsf indicates the CDF of the bias corrected variable in the future. When bias correcting a 293 

historical run Eq. 4 reduces to QM in general, although the treatment of values off the end of the 294 

distribution (discussed further below) may come into play. 295 

As Figure 1c makes clear, QM and EDCDFm change a model’s value while preserving 296 

its quantile (a point on the Fgf curve is bias corrected by moving it horizontally), while CDF-t 297 

changes a model’s quantile while preserving its value (a point on the Fgf  curve is bias corrected 298 

by moving it vertically). An alternative, but equivalent, explanation is that Eq. 4 preserves 299 

model-predicted changes at quantiles, but unlike EDCDFm the model-predicted change that is 300 

preserved is taken from a different quantile than it is applied to (EDCDFm applies the model-301 

predicted change at some quantile to that same quantile).  302 

For example, consider the GCM-predicted change in median value. The EDCDFm bias 303 

corrected change in the median value is equal to the model predicted change at a quantile of 304 

u=0.5 (the median). However, the CDF-t bias corrected change in the median value is equal to 305 

the model predicted change at some other quantile, u* ≠ 0.5. It can be shown that �∗ =306 

�
�	������0.5�
, i.e. the percentile in the model historical distribution of the observed median 307 

value. So CDF-t will only preserve model-predicted changes in the median under certain special 308 

circumstances, such as when u* = 0.5 (i.e., the GCM predicted the correct median over the 309 
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historical period in the first place) or if the model-predicted changes are the same at different 310 

quantiles (a simple shift in the distribution). 311 

The third rows of Figure 2 and Figure 3 show the effect of CDF-t bias correction on the 312 

original GCM-predicted change in temperature and precipitation, respectively. CDF-t alters the 313 

model predicted change in temperature by more than 1°C in the upper Midwest. The model-314 

predicted change in precipitation is affected less by CDF-t than by quantile mapping or 315 

EDCDFm, but still can change the model prediction by more than 30 percentage points in some 316 

locations. In other months the precipitation alterations due to CDF-t bias correction can be as 317 

large as those found by quantile mapping and EDCDFm (not shown). 318 

3.5 Bias correction that preserves model-predicted mean changes 319 

Figure 1d, Figure 2, and Figure 3 show that the three bias correction methods considered 320 

so far, QM, EDCDFm, and CDF-t, all produce reasonable appearing yet different future CDFs 321 

and fields. Lacking theoretical guidance there is no obvious way to choose which method 322 

produces the most correct future representation. Li et al. (2010) and Maurer and Pierce (2013) 323 

use historical natural variability as a surrogate for forced changes to evaluate the quality of bias 324 

correcting future changes, but as discussed in Maurer and Pierce (2013) this approach is limited 325 

since natural variability does not necessarily arise from the same physical processes as 326 

anthropogenically forced climate change. 327 

Each future field is determined by the assumptions of the bias correction method used to 328 

create it. QM assumes that the historical model error in value at a given value is preserved in the 329 

future (arrow (2) in Figure 1a), EDCDFm assumes that the historical model error in value at a 330 

given quantile is preserved in the future (∆ in Figure 1c), and CDF-t assumes that the historical 331 

model error in quantile at a given quantile is preserved in the future (arrow (2) in Figure 1b). 332 
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(The “missing” version of this quartet of bias correction methods, which would assume that the 333 

historical model error in quantile at a given value is preserved in the future, could also be 334 

constructed.) 335 

Here we explore an alternative assumption: that the GCM-predicted mean change is 336 

preserved in the bias corrected future projections. The advantage of this approach is that 337 

downscaled results will then be more consistent with existing GCM analyses such as IPCC 338 

(2007, 2013). 339 

EDCDFm already preserves model-predicted changes in temperature (evaluated 340 

additively) for all practical purposes so we adopt it for temperature here. However an amended 341 

form is required for precipitation since we evaluate its changes multiplicatively.  Eq. 2 can be 342 

recast as a multiplicative scheme that preserves the model-predicted change as a ratio: 343 

�� = ����� 	�
����
 �
�
��� 	�
����
.																																																	�3� 

In other words, if the predicted GCM value x falls at quantile u, then the bias corrected 344 

precipitation value is the historical value at u multiplied by the model-predicted change at u 345 

evaluated as a ratio. In fact, Li et al. (2010) do this for a small number (~0.3%) of grid points that 346 

otherwise are “problematic” when bias correcting precipitation additively, although in the 347 

context of their study they did not explore the implications of Eq. 3 for preserving a model-348 

predicted future precipitation change. Note that Eq. 3 cannot be applied at quantiles where there 349 

is no precipitation, in which case the denominator becomes zero. In this event we simply set the 350 

model-predicted change ratio to 1.  351 

The treatment of zero-precipitation days is an important consideration for regional 352 

climate change (Polade et al. 2014). We calculate a location-specific zero-precipitation threshold 353 

for the GCM, τ , such that applying τ  makes the model’s number of zero-precipitation days 354 
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match observations over the historical period. Specifically, τ = Fgh(qmax) where qmax is the largest 355 

quantile at which Fsh(qmax) = 0. We require τ  >= 0.01 mm/day to avoid the possibility of very 356 

small denominators in Eq. 3. Current GCMs tend to precipitate too frequently, often at daily 357 

amounts above 0.01 mm, so this limit is rarely invoked. The GCM-predicted future fraction of 358 

zero-precipitation days, Zgf , is calculated using τ with the GCM’s original (non-bias corrected) 359 

future time series. The model data is then bias corrected, and the smallest Zgf  fraction of 360 

precipitation values are set to zero. In most cases this means that the GCM-predicted change in 361 

fraction of zero-precipitation days is preserved in the bias-corrected output. However it 362 

sometimes happens that the bias-corrected future time series has a larger fraction of zero 363 

precipitation days than Zgf, which is not a correctable bias since there is no way to know which 364 

zero-precipitation days should be set to have a positive value. 365 

Model-predicted changes in mean precipitation (evaluated multiplicatively) are generally 366 

not preserved using Eq. 3 for the same reasons noted above for the standard additive EDCDFm 367 

technique (i.e., changes in the quantile at which the mean falls). Although this results in 368 

negligible errors in temperature, precipitation distributions tend to be more skewed than 369 

temperature distributions and GCMs can show significantly varying predictions of future change 370 

as a function of quantile. Between these two effects Eq. 3 can still alter model-predicted changes 371 

in mean precipitation in some seasons and locations. 372 

The model-predicted mean precipitation change (evaluated as a ratio) over the bias 373 

correction period can be preserved exactly if the right hand side of Eq. 3 is multiplied by a 374 

correction factor K: 375 

� = 〈�〉/〈��〉                                                                      (4) 376 
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where brackets indicate time averaging over all days in the appropriate month (since we are 377 

implementing bias correction separately for each month). I.e., K is the ratio of the mean change 378 

in the original GCM to the mean change in the bias corrected GCM. We call the combination of 379 

Eqs. 3 (the ratio-preserving formulation of EDCDFm) and 4, together with the treatment of zero-380 

precipitation days described above, the PresRat bias-correction method because it “preserves the 381 

ratio,” specifically the mean GCM-predicted future precipitation change evaluated as a ratio. In 382 

application the future / historic ratios are first computed at each quantile, then those ratios are 383 

scaled by K. Figure 1d includes results from PresRat (purple line) applied to the synthetic 384 

example data as well as the other methods, for comparison. 385 

The corrections (K) that PresRat requires to maintain the model-predicted precipitation 386 

change are second order, arising from changes in the percentile at which the mean falls combined 387 

with differing model-predicted changes at different percentiles, and so tend to be modest. Figure 388 

4 shows K for four different months averaged across all 21 GCMs. In any given month Eq. 3 389 

tends to alter the model-predicted mean change by less than 5% in the majority of the region 390 

(white areas of Figure 4); in most other locations the mean is changed less than 20% (light and 391 

dark green and yellow areas). In some places though, especially the dry regions of California in 392 

summer, PresRat requires substantial corrections to preserve the model-predicted mean change.  393 

By construction, PresRat preserves the model-predicted mean precipitation change 394 

exactly in CCSM4 (bottom row of Figure 3). Although it is a minor effect, it is also worth noting 395 

that PresRat allows the model to reproduce the observed historical mean in some cases where the 396 

GCM has more zero-precipitation days than observed. In this situation the other bias-correction 397 

techniques (QM, EDCDFm, and CDF-t) are unable to preserve the historical mean value since 398 

there is no way to know which of the too numerous zero-precipitation model days should be 399 
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assigned a positive precipitation value (see section 3.1). This tends to be a minor effect because 400 

in this situation it is the lowest precipitation days that the GCM is missing, and since 401 

precipitation tends to have a strongly skewed distribution (especially in dry areas) the smallest 402 

precipitation days contribute little to the monthly mean. Even PresRat cannot maintain the 403 

model-predicted change if in the future period there is a month with no precipitating days to 404 

correct, which does occur in some models for particularly dry locations and months. 405 

PresRat generally preserves mean changes in precipitation while also allowing for 406 

changes in the distribution. However a possible concern is that the multiplicative factor K is 407 

calculated to preserve the GCM-predicted mean change but alters the bias-corrected future 408 

values at all quantiles, not just the mean (i.e., PresRat does not preserve the model-predicted 409 

ratio at each quantile after K is applied). The fact that K typically alters the values by less than 410 

5% (Figure 4) should allay this concern to some degree but it is still worth checking explicitly.  411 

An underlying uncertainty is that there is no straightforward approach for evaluating the 412 

correctness of future distributions of climate variables. Using changes over the historical period 413 

is possible but has the drawbacks noted in Maurer and Pierce (2013). As a practical matter we 414 

compare future extreme precipitation values developed by PresRat to those from QM, CDF-t, 415 

and EDCDFm. We cannot determine whether or not the distributions produced by PresRat are 416 

correct just by comparing them with the distributions of other methods, but it is useful to know 417 

how the methods compare. 418 

Figure 5 shows how often each of the bias correction methods (QM, CDF-t, EDCDFm, 419 

and PresRat) produces the smallest (rank 1) or largest (rank 4) 95th percentile value of future 420 

(2070-99) winter (DJF) daily precipitation in each of the 21 global models. If the 4 bias 421 

correction methods tended to produce equal values of the extrema, then on average each method 422 
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would produce 25% of the values in each rank. Accordingly the values shown in Figure 5 are the 423 

difference (in percentage points) from 25%, so that positive values are seen where the bias 424 

correction method is producing more values in that rank than the other methods by the end of the 425 

century and negative values are seen where the method is producing fewer values of that rank 426 

than the other methods. This highlights the dominance of any one method in contributing values 427 

of a given rank. CDF-t and PresRat produce similar numbers of rank 1 (smallest) 95th percentile 428 

values of future winter precipitation, while EDCDFm tends to produce considerably more rank 4 429 

(largest) 95th percentile values than the other methods. PresRat has a surfeit of rank 2 (middle of 430 

the pack) values compared to the other methods. While again emphasizing that we do not know 431 

which of these representations is the most correct, we can nonetheless infer that an end-of-432 

century hydrological simulation using EDCDFm or QM bias corrected precipitation is likely to 433 

produce more frequent or severe winter flooding events than one using PresRat. A similar 434 

analysis for future summer (JJA) precipitation is shown in Figure 6; QM tends to show the 435 

largest (rank 4) 95th percentile precipitation values and PresRat the smallest (rank 1) by the end 436 

of this century. In other words, assuming that the model historical error at a given value is 437 

preserved (as QM does) tends to lead to precipitation values that are more extreme than is 438 

consistent with the factor that the GCM indicates the model precipitation will change by. 439 

3.6 Multi-model ensemble results 440 

Since bias correction affects different GCMs differently, it is useful to examine the effect 441 

of bias correction on model-predicted changes aggregated across models. Figure 7 shows 442 

projected changes (2070-99 relative to 1976-2005) in daily maximum temperature after bias 443 

correction minus projected changes in the original GCM, averaged across all 21 GCMs. It is 444 

apparent that QM and CDF-t have systematic effects, so an analysis of future temperatures 445 
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would not be protected against the tendency of these bias correction techniques to alter model-446 

predicted changes even if it used a relatively large ensemble of models. Some models show 447 

alterations considerably larger than these mean values, so using a small number of models with 448 

bias correction is potentially risky. QM, in particular, exaggerates model-predicted winter 449 

warming across much of the north-central U.S. and diminishes summer warming through much 450 

of the southeast. This provides justification for some implementations of QM (e.g., Wood et al., 451 

2004) to remove the GCM trend prior to bias correction and replace it afterward. As outlined in 452 

Maurer and Pierce (2013), QM’s modifications of the GCM trend are related to GCM 453 

misrepresentations of variability in the historical model run. CDF-t shows much smaller mean 454 

changes, but they still can exceed 0.5 °C in some locations. EDCDFm, by construction, shows 455 

very little alteration of mean model-predicted changes in future daily maximum temperature. 456 

Of course, when considering multi-model ensemble averaging the mean result might be 457 

near zero but the individual models could have a large spread of values about zero. To determine 458 

if this is the case, Figure 8 shows the RMS difference (calculated across the 21 GCMs) between 459 

the original model-predicted future (2070-99) change in daily maximum temperature and the 460 

change after bias correction has been applied. This largely confirms the interpretation of Figure 461 

7; QM shows the greatest tendency to alter the original model-predicted changes in daily 462 

maximum temperature, and CDF-t has both a reduced spread of results (compared to QM) and a 463 

mean closer to zero. EDCDFm shows essentially no spread between models. 464 

A similar analysis for future (2070-99) changes in daily precipitation is shown in Figure 465 

9. In the multi-model ensemble average, QM, CDF-t, and EDCDFm all alter the mean GCM-466 

predicted future change in precipitation by more than 30 percentage points in some times and 467 
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locations, although generally CDF-t imposes smaller changes than QM and EDCDFm. QM has a 468 

tendency to make the model-predicted changes wetter (cf. Maurer and Pierce 2013). 469 

CDF-t tends to make forecast changes drier, for reasons that can be understood in terms 470 

of Figure 1c. To produce a point on the bias corrected future distribution it is necessary that the 471 

model historical value at the quantile being bias corrected fall within the range of observed 472 

values, as indicated by vector (2) in Figure 1c. E.g., if vector (2) were progressively moved to the 473 

right in Figure 1c, it can be seen that no historical values greater than X=16 mm/day (the 474 

maximum observed value in Figure 1c) could be bias corrected.  In this event, following 475 

Michelangeli et al. 2009, the correction used is that found at the maximum valid historical value. 476 

However the GCM precipitation simulations tend to display two attributes: 1) They over-predict 477 

precipitation in dry areas, so the model CDFs are shifted to the right of the observed CDF (as 478 

depicted in Figure 1c); 2) The most extreme precipitation events increase preferentially more 479 

than others (e.g., IPCC 2007, 2013). In these situations CDF-t tends to be forced to use the 480 

maximum valid correction, which falls at a lower quantile, and so misses the preferential 481 

increase in the very highest quantiles. Figure 9 shows that this is only a modest tendency outside 482 

of dry summer California/Great basin months, but could be a consideration for regional flooding 483 

studies. 484 

EDCDFm has mixed effects but makes the simulations strongly wetter in winter in the 485 

Rocky Mountains and Great Basin, when much of those areas receive the bulk of their annual 486 

precipitation, as well as the upper Midwest. In general EDCDFm will make predicted 487 

precipitation changes wetter in locations where the GCM simulates a wetter climatology than 488 

observed since a fixed model change (in the quantile) is being applied to a smaller historical base 489 

value. By construction PresRat has little effect on the model-predicted mean change in future 490 
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precipitation, although the effect is not zero (in contrast to the results for EDCDFm with daily 491 

maximum temperature) because a few of the models do not have enough precipitating days to be 492 

corrected in certain months. This is particularly prevalent in California in July, where a number 493 

of the GCMs have no July precipitation that can be altered by the bias-correction scheme. The 494 

RMS spread of results across models (Figure 10) shows roughly comparable values for QM and 495 

EDCDFm and nearly as much for CDF-t, while PresRat has much less spread. As found in the 496 

mean results, the locations where PresRat does show model spread is due to occasional models 497 

predicting too little precipitation in some month for a correction to be applied. 498 

3.7 Summary: preserving model-predicted mean changes 499 

The QM and CDF-t bias correction methods generally alter model-predicted mean 500 

changes in daily maximum temperature and precipitation. EDCDFm, however, effectively 501 

preserves model-predicted changes in mean daily maximum temperature. PresRat (which is a 502 

new extension of EDCDFm to preserve ratios, add a zero-precipitation threshold, and implement 503 

a correction factor) preserves model-predicted future changes in precipitation (evaluated as a 504 

ratio) as long as there exist precipitating days in the GCM simulation that can be corrected. This 505 

is accomplished with only modest correction factors (generally less than 5%, the notable 506 

exception being the very dry California summers). The extreme values produced by PresRat are 507 

mostly consistent with the extreme values from the other bias correction methods, though it tends 508 

to produce fewer of the highest 95th percentile values than EDCDFm (in winter) or QM (in 509 

summer).  510 

In summary, both temperature and precipitation can be bias corrected using methods that 511 

preserve global climate model-predicted future mean changes. Doing so would help minimize 512 

confusion and inconsistent results between downscaled regional climate simulations and global 513 
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model analyses, such as represented by the IPCC analyses (2007, 2013). The advantage of this 514 

approach over that taken in Wood et al. (2002), where the trend is removed, bias correction 515 

performed, and the interpolated trend re-introduced, is that the model-predicted changes 516 

themselves can be downscaled rather than being only interpolated GCM fields. 517 

4. Frequency Dependent Bias Correction 518 

4.1 Overview 519 

The previous section examined the effect of bias correction on GCM-predicted mean 520 

changes at long time scales (decades). In this section we address more general question of what 521 

model biases may be present across the gamut of timescales and how to address them. Quantile-522 

based bias correction methods such as QM, EDCDFm, CDF-t, and PresRat already alter the 523 

variance spectrum of the GCM’s time series if certain quantile values do not appear at random 524 

intervals in the time series, but rather preferentially at certain frequencies. For example the 525 

highest quantiles of California precipitation generally appear in winter, so the proportion of 526 

variance in the annual cycle will typically be altered by bias correction. However this effect is 527 

modest, as will be shown quantitatively below.   528 

The frequency-dependent bias correction method developed here is designed to 529 

systematically alter the shape of the GCM’s spectrum to better match observations without 530 

changing the overall variance. As such, it is intended to be applied as an additional processing 531 

step after standard bias correction has already adjusted the overall variance.  532 

Details are given in the following sections, but in broad terms, the frequency dependent 533 

bias correction proceeds as follows. First, the variance spectra of the observations and model are 534 

calculated. The model variance error as a function of frequency is then computed as the ratio of 535 
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the spectral values, (model/observed). To correct these errors the model time series is Fourier 536 

transformed to frequency space, then the amplitude of the Fourier components are adjusted so 537 

that the distribution of variance across frequencies better matches observations. The Fourier 538 

components are then inverse transformed back into a time series.  539 

Much of the following material is devoted to examining the result to make sure the 540 

process improves the model simulation rather than degrading it. However, one caveat is that the 541 

spectral approach used here does not consider frequency-dependent biases in different seasons or 542 

months, but instead only as a collective whole over the entire time period. This potentially means 543 

that it is not feasible to expect a removal of biases across all timescales of interest by this 544 

technique. 545 

4.2 Spectral Methodology 546 

Since we bias correct the future model projections in 30-yr periods (section 2.3), the 547 

PresRat method outlined in section 3.4 will preserve model-predicted mean changes at periods of 548 

30 years and longer in the future projection. Accordingly, when we consider frequency-549 

dependent bias corrections we need only include, at most, periods from two days (the Nyquist 550 

frequency given the daily model output) to 30 years. This interval will be further refined below 551 

in light of our spectral analysis technique. Model predicted changes at these frequencies can arise 552 

from natural internal climate variability, anthropogenic causes, or both. 553 

Numerous techniques are available to compute variance spectra (for a review, see Ghil et 554 

al. 2002). Many of the newer methods have been developed to identify narrow-band signals 555 

against a background of noise. However, in this work we are also concerned with the power in 556 

the broad parts of the spectrum that might in other applications be considered simply “noise”. 557 

This variability represents weather and climate fluctuations that affect hydrology and ecosystems 558 
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across a wide range of time scales, so we seek as realistic a simulation of these fluctuations as 559 

possible. Accordingly we use relatively wide bandwidths in this work and employ the Jenkins 560 

and Watts (1969) method of computing variance spectra as the Fourier transformation of the 561 

autocovariance function. We require at least 40 degrees of freedom in the spectral estimates, 562 

which given 30 years of daily data and a Parzen lag window, means truncating the 563 

autocovariance function after 1020 lags (Jenkins and Watts 1969). Following the Jenkins and 564 

Watts recommendations the number of frequencies is set to twice the number of lags (2040), so 565 

the first non-zero frequency corresponds to a period of ~11 yrs. Longer periods are unresolved, 566 

and the frequency-dependent bias correction does not alter their relative proportion of variance. 567 

With over 2000 frequencies spanning from 2 days to 11 years it is useful to reduce the 568 

number of frequencies at which the model error is corrected to avoid spurious over-fitting. 569 

Accordingly, the frequency-dependent model errors are calculated in a reduced set of 100 570 

frequency bins of equal width in the logarithm of frequency. This means that higher frequency 571 

bins have multiple samples, as shown in Figure 11, with more than 5 samples per bin at periods 572 

shorter than ~80 days (purple lines). The binning therefore reduces the uncertainty in the spectral 573 

estimates for periods shorter than ~80 days. The average value of the spectrum in a bin is 574 

estimated using monotonic cubic splines (Fritch and Carlson 1980) to avoid abrupt changes in 575 

the estimate depending on whether a frequency point is barely included or excluded from a bin. 576 

Von Storch and Zwiers (2001) note the problems in interpreting spectral plots on a 577 

logarithmic frequency axis, since the displayed area under the spectrum is no longer proportional 578 

to the variance. It is possible to maintain the property of being a spectral density if the spectral 579 

value is multiplied by frequency, or if the plotted values are integrated (as opposed to averaged) 580 

across constant widths of the logarithmic frequency axis. However these approaches change the 581 
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angle of a plotted spectrum (for example, a white spectrum is then no longer flat), which can be 582 

confusing. To avoid this potentially misleading situation, values shown here are simply averaged 583 

in frequency so that the spectra appear similar to what is typically found in the literature (i.e., a 584 

white spectrum is flat).  585 

4.3 Frequency dependent model errors 586 

Figure 12 shows maps of the observed (1976-2005) distribution of variance in daily 587 

maximum temperature across frequencies (labeled using equivalent periods) and the multi-model 588 

ensemble errors in representing this distribution in the same period. The left column shows 589 

observations (% of total variance), the middle column shows the multi-model mean error (%) 590 

with respect to the observations, and the right hand column shows multi-model RMSE (%; i.e., at 591 

each point, the spread of values across the 21 models). The frequency-dependent bias correction 592 

is based on normalized spectra (spectral values divided by the variance of the original time 593 

series) so that it leaves the overall variance unaltered. Therefore at every location the values in 594 

the left hand column summed across frequency bands total 100%. For example, the top left panel 595 

of Figure 12 shows that in the region from western Texas north to western Kansas more than 596 

10% of the total variance falls in the 2-10 day band, while in the region immediately to the west 597 

less than 4% does.  598 

As expected, Figure 12 shows that the annual cycle dominates the daily maximum 599 

temperature variability over almost all of the conterminous U.S., containing on average 62% of 600 

the total variance. The exception is in locations along the California coast, where shorter period 601 

variability makes a much larger contribution to the overall variance than found elsewhere.  602 

Reinforcing the notion that bias correction might usefully be applied as a function of 603 

frequency, the multi-model aggregate profile of model errors of daily maximum temperature 604 
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(middle column) varies considerably across the spectral range.  Over much of the domain there is 605 

a tendency for models, on average, to allocate less of the total variance to periods shorter than 3 606 

months than is observed, particularly in the 10-30 day band where the mean error is −9%. RMS 607 

errors at periods shorter than the annual cycle are typically on the order of 10-15% of observed 608 

variance in those frequency bands, which implies that the mean error is relatively consistent 609 

across the models. The proportion of variance in the annual cycle is represented with virtually no 610 

mean error and a very small spread across models.  611 

A deficiency in daily maximum temperature variability at periods shorter than the annual 612 

cycle combined with an accurate representation of the annual cycle implies that periods longer 613 

than the annual cycle must be receiving proportionally too much variance, which is confirmed by 614 

Figure 12b. Variability that occurs at periods longer than 30 months has, on average, 615 

proportionately ~40% more variance than observed, and the spread across models is large, with 616 

RMS errors of ~60%. However it should be kept in mind that the fraction of total variance 617 

contained in these long time scales is quite small (< 1% for all timescales longer than 30 618 

months). 619 

Figure 13 shows the same frequency-dependent analysis using daily precipitation. In 620 

contrast to daily maximum temperature, over most of the conterminous U.S. the shortest periods 621 

(2-10 days) contain the majority of the variance (on average, 62%). The exception is the wet 622 

parts of the west coast, where 10-30 day and longer period variability is nearly as important and 623 

the annual cycle contains > 7% of the total variance, more than twice the average at that 624 

frequency over the domain. The models as a group tend to simulate the short-period (2-10 day) 625 

fraction of total variance reasonably well, with a modest (5-10%) mean bias towards too much 626 

short-period variability along the west coast and upper Midwest and too little around Texas, 627 
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Oklahoma, and the Gulf coast. Figure 13b shows that model-simulated precipitation variability at 628 

periods of 30 months or longer accounts for an anomalously large proportion of the total 629 

variance in the southeastern U.S., and an anomalously small proportion in the Pacific Northwest. 630 

Rupp et al., (2013) also found that models overestimate temperature variance at timescales 631 

longer than a year and underestimate precipitation variance at timescales longer than a year in 632 

the Pacific Northwest, USA. Disagreements across the models are large at these longer periods.  633 

4.4 Correcting frequency-dependent model errors 634 

4.4.1 Method for frequency-dependent bias correction 635 

To correct the frequency-dependent model biases at some location, the ratio σ of the 636 

model’s variance spectrum to the observed variance spectrum is computed in each of the 100 637 

logarithmically spaced frequency bins. This step is analogous to calculating the ratio of model to 638 

observed values at each quantile in the cumulative distribution function in the PresRat method. 639 

Both spectra are computed over the historical climatology period, 1976-2005. The original model 640 

time series is then transformed to frequency space and, to bias correct the model series, the 641 

amplitude of the Fourier components are multiplied by "�#���/$ (the square root accounts for 642 

the fact that variance is proportional to the amplitude of the Fourier components squared). The 643 

result is then transformed back to the time domain. As typical in statistical bias correction 644 

techniques, σ is calculated over the control period and applied to both the control and future 645 

periods. This assumes that the statistics of the model error as a function of frequency do not 646 

change, but does not prevent a model from changing its future spectrum, either the overall 647 

amplitude of variance or the distribution of variance across frequencies; it just means that any 648 

model-predicted changes will be relative to the corrected model spectrum.    649 
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4.4.2 Example results for daily maximum temperature 650 

As noted above, standard bias correction techniques such as QM, EDCDFm, and CDF-t 651 

alter the spectra of the time series they are applied to. Thus, in order to clearly demonstrate the 652 

effect of the frequency-dependent bias correction by itself, we first present results using only the 653 

frequency-dependent bias correction. We then show combined results using the frequency-654 

dependent bias correction applied in conjunction with standard bias correction. 655 

Typical results of the frequency-dependent bias correction using daily maximum 656 

temperature from the CCSM4 GCM are illustrated in Figure 14. The left column shows 657 

normalized spectra of observations (red), the original model (blue), and the model after 658 

frequency-dependent bias correction (green dots). For each panel values are taken from the 659 

location indicated by the purple ‘x’ on the inset map and shown in the panel’s title (longitude, 660 

latitude). The right column shows the ratio of the model’s spectral value to the observed value, 661 

both before (blue) and after (green dots) the frequency-dependent bias correction is applied.  662 

It is useful to define a root mean squared error metric appropriate for ratios of the spectral 663 

values, which we designate as log-RMSE to differentiate it from standard RMSE measures that 664 

are appropriate to differences rather than ratios. Let % = ln ", then 665 

log-RMSE ≡ exp	�3〈%$〉 − 1																																																												�5� 
where the angle brackets indicate the mean over the logarithmically spaced frequency values. 666 

This expression treats equal ratios of error equally (i.e., the model having twice the observed 667 

variance produces the same error as the observations having twice the model’s variance), and the 668 

final −1 makes a perfect result (model variance equal observed, so σ = 1) give a log-RMSE of 0. 669 

In general, if the model values are incorrect (on average across log-spaced frequencies) by a 670 

factor of σ then the log-RMSE is σ − 1. These log-RMSE values are indicated in the right column 671 
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of Figure 14. When we refer to log-RMSE below, we specifically mean the model’s error in 672 

reproducing the distribution of variance across frequencies, as illustrated in Figure 14. 673 

In some locations, such as the San Francisco region (top row of Figure 14), the ratio of 674 

the model variance to observed exhibits a notable slope (top right panel) which indicates that the 675 

model frequency errors are a systematic displacement of variance, depriving high frequencies 676 

and enriching low frequencies. At all locations the frequency-dependent bias correction improves 677 

the model’s representation of how variance is distributed across frequencies. The log-RMSE 678 

typically drops by about a factor of 5 as a result of the correction. Some residual error remains 679 

due to the approximate nature of corrections calculated using discretely sampled data on a finite 680 

interval. 681 

4.4.3 Example results for daily precipitation 682 

Precipitation is more difficult to correct than temperature because it cannot have negative 683 

values, which limits the adjustments that the frequency-dependent bias correction can produce. 684 

There are also many days with zero precipitation, which we do not alter. In fact, to avoid 685 

potential problems with exacerbating models’ drizzle problem, whereby they produce too many 686 

days of light precipitation (Sun et al. 2006; Dai 2006), we leave unmodified any model 687 

precipitation values less than 1 mm/day. Particularly in dry areas this can leave few days for the 688 

frequency-dependent bias correction to operate upon. 689 

Precipitation results at a few example locations are shown in Figure 15 using CCSM4. It 690 

is apparent that the frequency dependent bias correction is less effective at adjusting precipitation 691 

than temperature. For example log-RMSE values only decrease by a factor of 1.3 to 2 rather than 692 

a factor of 5, as found for temperature. But although the corrections are relatively modest, they 693 

result, uniformly, in the direction of decreasing model error and so are helpful. 694 
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4.4.4 Multi-model ensemble average results 695 

The multi-model ensemble average log-RMSE for daily maximum temperature is shown 696 

in the top row of Figure 16 both before (left column) and after (middle column) the frequency-697 

dependent bias correction. The models systematically disagree with the observations, particularly 698 

along the west coast and in a band extending north from northern Texas. Before the frequency-699 

dependent bias correction the mean log-RMSE of daily maximum temperature error of 0.50 700 

indicates that the models are, on average across models, locations, and frequencies, off by a 701 

factor of 1.50 (i.e., by 50%) in their representation of the variance in any particular frequency 702 

band. After frequency-dependent bias correction the log-RMSE drops to 0.11 (nearly a factor of 703 

five decrease), indicating that the corrected models are only off by a factor of 1.11 on average. 704 

Results for daily precipitation are shown in the bottom row of Figure 16. The models as a 705 

group tend to do worse in the Rocky Mountains and Great Basin than in most other locations. 706 

The mean log-RMSE for precipitation is approximately the same as for daily maximum 707 

temperature. However, as expected for the reasons given above, precipitation is less easily 708 

corrected than temperature; the log-RMSE for precipitation drops by less than a factor of 2 after 709 

the frequency-dependent bias correction. The pattern of log-RMSE precipitation errors after 710 

correction (Figure 16, lower center) primarily reflects the rate of occurrence of days with > 1 711 

mm/day of precipitation (our threshold for correction). The final results are best where the most 712 

potentially correctable precipitation values exist and worst where there are few correctable days. 713 

However this does not completely explain the pattern; there are residual differences that reflect 714 

the seasonality and other aspects of the local precipitation distribution. 715 

An important consideration is whether the frequency-dependent bias correction makes the 716 

representation of variance with frequency worse in some locations despite being better on 717 
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average. This is addressed by the histograms in Figure 16 (right column), which show the 718 

difference between each location’s corrected and original log-RMSE, pooled across every 719 

location and every model. On average the frequency-dependent bias correction decreases the log-720 

RMSE for daily maximum temperature by 0.39, and this is accomplished without making any 721 

locations worse (no positive values are seen in the histogram). Even for precipitation, which 722 

shows less improvement (decrease of log-RMSE by 0.21) from the frequency-dependent bias 723 

correction than temperature, the correction virtually always decreases the log-RMSE (lower right 724 

panel of Figure 16). 725 

4.4.5 Magnitude of the corrections 726 

It would be potentially troubling if the modifications to the time series made by the 727 

frequency-dependent bias correction were too large. Histograms of the amplitude of the 728 

corrections pooled across all models and locations are shown in Figure 17. Any day’s maximum 729 

temperature is changed less than 3°C about 95% of the time, although rarely the changes can 730 

exceed 4°C. The change in precipitation is less than 40% or 1.5 mm day-1 about 95% of the time, 731 

although on rare occasion can be more than 50% or 2.5 mm day-1. Since the frequency-732 

dependent bias correction operates on normalized spectra, altering the distribution of variance 733 

across frequencies without altering the overall variance, the mean changes are approximately 734 

zero for both temperature and precipitation. 735 

Time series of daily maximum temperature before and after the frequency-dependent bias 736 

correction are shown in Figure 18, using year 2000 from the CCSM4 GCM as an example.  For 737 

plotting purposes the annual mean value (shown in the upper right part of the panel) has been 738 

removed. The changes to the time series made by the frequency-dependent bias correction are 739 

small compared to the synoptic and annual timescale fluctuations in the time series. Similar time 740 
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series for daily precipitation are shown in Figure 19. Again, the modifications made by the 741 

frequency-dependent bias correction are modest compared to the daily variability. The relatively 742 

constrained nature of the changes imposed by the frequency-dependent bias correction shows 743 

that the improvement in spectral properties afforded by the frequency-dependent bias correction 744 

does not come at the expense of creating an unrealistic time evolution in the final fields. 745 

4.4.6 Combined effects of standard and frequency-dependent bias correction 746 

In this section we explore the effect of frequency-dependent bias correction applied in 747 

conjunction with standard bias correction. Only the historical period is considered since we 748 

compare to observations. This in turn restricts this analysis to QM since the other bias correction 749 

methods differ from QM exclusively in the future period. 750 

Figure 20 shows the multi-model mean log-RMSE across all the climate models for daily 751 

maximum temperature, both before any bias correction has been applied (panel a) and after 752 

various combinations of QM and frequency-dependent bias correction have been applied (panels 753 

b-e).  QM by itself decreases the mean log-RMSE by about 0.15, compared to the frequency-754 

dependent bias correction, which decreases the mean log-RMSE by about 0.39. So although QM 755 

helps make the models’ distribution of variance across frequencies closer to observed, the 756 

improvement is considerably smaller than that achieved by the frequency-dependent bias 757 

correction. Panels d and e show the results when applying the frequency-dependent bias 758 

correction either before or after QM. On average results are slightly better when the frequency-759 

dependent bias correction is applied after QM, although the difference is small.  760 

Figure 21 shows the same analysis for daily precipitation. QM does a slightly poorer job 761 

of improving the models’ depiction of variance across frequency than seen when operating on 762 

daily maximum temperature (a reduction in log-RMSE of 0.12 for precipitation vs. 0.15 for 763 
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temperature). However, as noted above, the frequency-dependent bias correction is not as 764 

effective in correcting precipitation as temperature (log-RMSE drops by 0.21 for precipitation vs. 765 

0.39 for temperature), although it is still provides almost twice the reduction in log-RMSE than 766 

found in QM alone (0.21 vs. 0.12). As found for daily maximum temperature, slightly better 767 

results are obtained when QM is followed by the frequency-dependent bias correction rather than 768 

the opposite order. 769 

It was previously noted (Figure 16) that one desirable aspect of the frequency-dependent 770 

bias correction is that no location’s agreement with observations becomes worse as a result of the 771 

method being applied. Figure 22 shows a similar analysis for daily maximum temperature (top 772 

row) and precipitation (bottom row) using various combinations of QM and frequency-773 

dependent bias correction. QM degrades the agreement between the model and observations in 774 

how variance is distributed across frequencies at about 9.6% of the locations (pooled across all 775 

models) for temperature and 23% for precipitation. Of course QM was not designed to take into 776 

account the variance spectrum of the simulation so this is not a surprising result, but it is 777 

nonetheless worth pointing out this previously unidentified drawback of QM. When frequency-778 

dependent bias correction is followed by QM (bottom right panel), 4.5% of the precipitation 779 

locations show worse agreement with observations than the original model even though the mean 780 

result is to improve the agreement. However when the order of operations is reversed, so that 781 

QM is followed by frequency-dependent bias correction, only 1.3% of the precipitation locations 782 

show a worse agreement with observations than found in the original model and no locations 783 

show a worse agreement for daily maximum temperature. These findings, along with the results 784 

from Figure 20 and Figure 21 that show a small but consistent superiority when applying QM 785 
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before the frequency-dependent bias correction, are the reason we perform the operations in this 786 

order. 787 

Although these results show that it is better to apply the frequency-dependent bias 788 

correction after QM, a point of concern is what effect this might have on the quantile matching 789 

bias correction that QM performs. Does the frequency-dependent bias correction significantly 790 

degrade the correspondence between modeled and observed quantiles that QM imposes? This is 791 

evaluated in Figure 23, which shows quantile-quantile plots comparing the quantile at which a 792 

value falls in the observed distribution to the quantile at which the same value falls in the 793 

models’ distributions. Plotted values are pooled across all models and locations. If the models 794 

had a perfect representation of the observed distribution, then all the model values would fall 795 

along a straight line with slope of 1 (dashed green line in Figure 23). The box and whiskers in the 796 

figure show the distribution of model values that are found for a given observed quantile. For 797 

example, the upper left panel of  Figure 23 shows that the median (0.50 quantile) observed value 798 

of daily maximum temperature is, in the median, found at the 0.55 quantile in the models, so the 799 

models as a group have a slight cold bias relative to the observations. Half the time the observed 800 

median value is found between the 0.50 and 0.60 quantile in the models; and 90% of the time the 801 

observed median value is found between the 0.45 and 0.70 quantile in the model. 5% of the time 802 

the observed median value falls either below the 0.45 quantile or above the 0.70 quantile in the 803 

model. 804 

Figure 23 shows that, viewed across their CDFs, the models do better simulating the 805 

distribution of daily maximum temperature than precipitation; at least 25% of the models 806 

simulate the observed quantile of daily maximum temperature correctly, no matter what 807 

observed quantile is considered. For precipitation however, notably less than 25% of the models 808 



37 
 

manage to simulate the observed percentile correctly at quantiles < 0.5, and at the lowest quantile 809 

plotted less than 5% of the models are able to simulate the observed percentile. The positive 810 

precipitation bias at low quantiles is consistent with the models’ drizzle problem. 811 

For our purposes, the left two columns of Figure 23 shows that the frequency-dependent 812 

bias correction does not systematically alter the shape of the model distributions, which is by 813 

design since the method is intended to leave the overall variance unchanged. When QM is 814 

applied, either before frequency-dependent bias correction or after (right two columns of Figure 815 

23), the agreement between observed and modeled quantiles is quite good. This is an outcome of 816 

QM by construction, and the frequency-dependent bias correction changes that result only a 817 

little. 818 

Overall we conclude that the frequency-dependent bias correction does not inflict 819 

additional problems to the resultant adjusted model output.  Furthermore, it is useful to apply 820 

since it increases the average agreement between the observed and modeled distribution of 821 

variance across frequencies without degrading the agreement at any location. It accomplishes 822 

this with relatively small and symmetric corrections (typically < 3°C or 2 mm/day) without 823 

imposing spurious behavior in time or diminishing the agreement between modeled and observed 824 

quantiles that QM imposes. 825 

5. Summary and Conclusions 826 

GCMs generally produce biased simulations of variables such as temperature and 827 

precipitation. It is necessary to remove these biases before using the model-simulated fields in 828 

applications that have non-linear sensitivities to biases, such as land surface or hydrological 829 
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modeling. Accordingly, a bias correction step is often performed on GCM fields before use in 830 

such applications. 831 

One problem with bias correction methods such as quantile mapping (QM; e.g., Wood et 832 

al. 2002) and the CDF-transform method (CDF-t; Michelangeli et al. 2009) is that they alter 833 

GCM-predicted mean future changes, evaluated here as 2070-99 relative to 1976-2005. 834 

Compared to the original changes produced by an ensemble of 21 GCMs with the RCP 8.5 835 

anthropogenic greenhouse gas and aerosol scenario, QM produced warmer future daily 836 

maximum temperatures by up to 2°C across much of the upper Midwest, California coast, and 837 

Northern Rockies in January, and cooler daily maximum temperatures by up to 2°C across much 838 

of the southeastern part of the U.S. in July. CDF-t showed smaller alterations of up to 0.5°C, but 839 

they may still have consequence because they tend to persist throughout the year. When 840 

evaluated as a multiplicative change in precipitation, QM and the equidistant CDF matching 841 

method (EDCDFm; Li et al. 2010) produced wetter conditions than projected by the original 842 

global models by up to 30 percentage points across the upper Midwest and Northern Rockies in 843 

January, while CDF-t produced drier conditions by up to 20 percentage points in the Southwest 844 

U.S. in summer. These changes are large enough to make a practical difference in the results of 845 

climate impact studies, which is problematic given their widespread usage and because the 846 

magnitude of changes imposed through bias correction can be of the same order of magnitude as 847 

the model predicted changes by the end of the century. Moreover, because analyses of the 848 

projected climate changes in the original GCMs are widespread (e.g., IPCC 2007, 2013), 849 

alterations to the GCM trends may lead to inconsistencies and confusion in bias-corrected 850 

regional studies. 851 
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In the first part of this work we have demonstrated a methodology that uses existing and 852 

modified techniques to maintain model-projected climate changes even when bias correcting the 853 

global model data.  854 

Under the assumption that bias correction should preserve the model projected future 855 

change, EDCDFm works very well for temperature projections.  For precipitation projections we 856 

have introduced an extension to EDCDFm that we term PresRat, which “preserves the ratio” of 857 

future changes rather than the difference, includes a zero-precipitation threshold that makes the 858 

modeled number of zero-precipitation days match observations, and adds a correction factor that 859 

is typically < 5%. PresRat generally maintains model-predicted changes in daily precipitation. 860 

However none of the bias correction techniques, PresRat included, can preserve the model-861 

predicted precipitation change in cases where locations that are so dry there are insufficient 862 

precipitation days to bias correct (which is rare, but does happen in some models during the dry 863 

months). 864 

In the second part of the study we extend our examination of model biases from trends to 865 

the more general issue of the models’ representation of variance across a range of timescales, and 866 

introduce a frequency-dependent bias correction method that can address inaccuracies in the 867 

GCM simulations. A comparison with observations showed that as a group, the 21 GCMs 868 

apportion too little variability of daily maximum temperature to times scales between 10 and 90 869 

days and too much to time scales longer than 30 months. The models’ simulation of daily 870 

precipitation variability was more mixed, but at long timescales (> 30 months) they show more 871 

variability than observed in the Gulf coast region and less than observed in the Pacific 872 

Northwest. 873 
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We showed that the models’ simulation of variance as a function of frequency can be 874 

improved by a frequency-dependent bias correction, which is implemented as digital filter in the 875 

frequency domain. Before the frequency-dependent bias correction the model simulations tend to 876 

err in their estimate of the frequency distribution of total daily maximum temperature variance 877 

by a factor about 1.5, RMS averaged across log-spaced frequencies. After the frequency-878 

dependent bias correction the RMS error drops to a factor of 1.11. Precipitation cannot be 879 

corrected as easily as temperature since locations typically have numerous zero-precipitation 880 

days, but the frequency dependent bias correction stills decreases the RMS error from a factor of 881 

1.49 to 1.28. These improvements are accomplished with relatively modest alterations to the 882 

original values, typically < 3°C in daily maximum temperature and < 1.5 mm/day in daily 883 

precipitation.  884 

The frequency-dependent bias correction improves the models’ simulation of variance as 885 

a function of frequency about twice as much as standard bias correction. Additionally the 886 

frequency-dependent bias correction makes no locations worse, while standard bias correction 887 

degrades the simulated distribution of variance across frequencies at about 9.6% of the gridpoints 888 

(pooled across all 21 global models) for daily maximum temperature and 23% for precipitation. 889 

Applying the frequency-dependent bias correction subsequent to standard bias correction both 890 

increases the models’ mean agreement with observations substantially (better than either 891 

technique applied alone) and reduces the fraction of degraded gridpoints to 0.0% for daily 892 

maximum temperature and 1.3% for precipitation. 893 

Important questions about bias correction remain. This study has not addressed whether 894 

bias correction should be applied at any particular location given that model-observational 895 

disagreements are influenced by natural climate variability, which can be large and affect climate 896 
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means over years to decades (e.g., Maraun et al. 2010; Deser et al. 2012). Likewise, it is not clear 897 

if models should be bias corrected to a particular period that tree ring or other paleoclimate 898 

evidence suggests is atypical. Although these are interesting questions, in this work we have 899 

followed the common practice of applying bias correction to the GCMs at all locations to bring 900 

them into agreement with a pre-selected recent climatological period. 901 

Another problem with bias correction techniques that is not addressed here is that a 902 

model with a seasonal cycle of precipitation that is greatly different from observations might not 903 

preserve the GCM-predicted annual change even if all precipitation trends are preserved at the 904 

monthly time scale. This reinforces the fact that although bias correction can help make the 905 

statistics of temperature and precipitation fields from a global climate simulation more like 906 

observations, it is possible for some models in some regions to produce such a poor simulation 907 

that bias correction has little meaning. Even before bias correction care should be taken to ensure 908 

that GCMs used in a regional climate impact study capture the relevant physical processes to 909 

begin with. For example, a GCM that lacks an ENSO cycle or seasonal monsoon flow can be 910 

bias corrected and downscaled like any other model, but the result will have little meaning in 911 

areas that are influenced by ENSO or monsoonal flow. 912 

In the end, as global climate model results continue to be applied to investigate 913 

phenomena that are sensitive to model biases, bias correction will become an ever more 914 

important step.  The bias correction methods outlined here can improve these simulations, giving 915 

a clearer picture of future climate conditions for a variety of applications. 916 
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 1056 

Abbreviation Model source/institution 

Access1-0 Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia 

Bcc-csm1-1 Beijing Climate Center, China 

Bnu-esm Beijing Normal University, China 

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 

CCSM4 National Center for Atmospheric Research, USA 

ECSM1-BGC National Center for Atmospheric Research, USA 

CNRM-CM5 Centre National de Recherches Meteorologiques, France 

CSIRO-Mk3.6.0 QCCCE & Commonwealth Scientific and Industrial Research 

Organization, Australia 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, Princeton, USA 

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, Princeton, USA 

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, Princeton, USA 

INMCM4 Institute of Numerical Mathematics Russian Academy of Sciences, 

Russia 

IPSL-CM5a-LR Institut Pierre-Simon Laplace, France 

IPSL-CM5a-MR Institut Pierre-Simon Laplace, France 

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, and 

National Inst. For Environ. Studies, Japan 

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, and 

National Inst. For Environ. Studies, Japan 

MIROC5 Atmosphere and Ocean Research Institute and Nat. Inst. For 

Environ. Studies, Japan 

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 

MRI-CGCM3 Meteorological Rsearch Institute, Japan 

NorESM1-m Norwegian Climate Centre 

Table 1. The GCMs used in this work and their originating institutions. 1057 
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 1058 

Figure 1. Cumulative distribution functions (CDFs) of synthetic daily precipitation data 1059 

schematically illustrating how each bias correction method constructs the model’s bias corrected 1060 

future CDF (green dotted/dashed lines). The solid blue, grey, and red lines are the same in all 1061 

panels and show the observed (1976-2005), model historical (1976-2005), and model future 1062 

(2070-2099) CDFs, respectively. The example point being corrected is X=30 mm/day, which 1063 

falls at the 0.56 quantile in the model future distribution (dotted orange line). a) Quantile 1064 

mapping (QM): starting at the point to be corrected, go vertically to the grey line (1), 1065 

horizontally to the blue line (2), and vertically to the original percentile (3). b) Equidistant CDF-1066 

matching (EDCDFm): at the quantile of the point being corrected, compute the offset from the 1067 

model historical value to the model future value (∆), then add ∆ to the observed value at the 1068 

percentile being corrected (1). c) The CDF-transform (CDF-t) method; starting at the point to be 1069 

corrected, go horizontally to the grey line (1), vertically to the blue line (2), and horizontally to 1070 

the original value (3). d) Final results from all 3 bias correction methods (dotted/dashed green 1071 

lines), along with the PresRat method (solid purple line) for comparison. Note that the X axis 1072 

uses a square root transformation and the Y axis uses an inverse error function (“probability 1073 

plot”) transformation. 1074 
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 1075 

Figure 2. Illustration of how bias correction can alter the model-predicted future change 1076 

in monthly-averaged maximum daily temperature, shown for July using the CCSM4 GCM. Left 1077 

column: the observations, model simulation over the historical period (1976-2005; °C), and 1078 

model error with respect to observations without any bias correction (°C). Right part of figure: 1079 

For each of the bias correction methods indicated (quantile mapping (upper row), EDCDFm 1080 

(middle row), and CDF-t (lower row)) shown are the model error with respect to observations 1081 

over the historical period after bias correction has been applied (°C), the model-projected future 1082 

change (2070-2099) after bias correction using the indicated method (°C), and the amount that 1083 

the bias correction method alters the original model-predicted change (°C). 1084 

 1085 

/cir1/compare_BC_methods_v3_tasmax_ccsm4.R.ps 1086 
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 1087 

Figure 3. Illustration of how bias correction can alter the model-predicted future change 1088 

in precipitation, shown for December using CCSM4. Left column: the observations, model 1089 

simulation over the historical period (1976-2005; mm/day), and model error over the historical 1090 

period with respect to observations without any bias correction (%). Right part of figure: For 1091 

each of the four bias correction methods indicated, shown are the model error with respect to 1092 

observations over the historical period after bias correction has been applied (%), the model-1093 

predicted change in future (2070-2099) precipitation field after bias correction with the indicated 1094 

method (%), and the amount that the bias correction method alters the original model-predicted 1095 

change in precipitation between the future and historical period (percentage points).  1096 

/cir1/cmip5_regrid/compare_BC_methods_v3_ccsm4.R.ps 1097 
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 1098 

Figure 4. Correction factors, K, for the PresRat scheme that are necessary to preserve 1099 

model-predicted changes (2070-2099 vs. 1976-2005) in mean precipitation, illustrated for four 1100 

months. Values are averaged across 21 GCMs. White areas are within 5% of unity. 1101 

 1102 

plot_presrat_factors_allmods.R.gif 1103 

 1104 
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 1105 

Figure 5. Percent of the 21 GCMs  in which the indicated bias correction method (rows) 1106 

produces a winter (DJF) 95th percentile daily precipitation value of the indicated rank (columns; 1107 

1=smallest value across the bias correction methods; 4=largest). Plotted values are relative to 1108 

25%, which is the expected value assuming all 4 bias correction methods produce extrema of 1109 

equal magnitude. Yellows and reds show where a particular bias correction method produces 1110 

more values of the indicated rank than expected; greens and blues show where it produces less 1111 

values of the indicated rank than expected. 1112 

 1113 

compare_BC_method_ptiles_pctextr_v3.R 1114 
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 1115 

Figure 6. Same as Figure 5, but for summer (JJA). 1116 

 1117 
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 1118 

Figure 7.  Bias corrected minus original GCM change in daily maximum temperature 1119 

(°C) over the period 2070-2099 relative to 1976-2005, shown for 4 months (rows) and 3 bias 1120 

correction methods (columns). Values are ensemble averaged across all 21 GCMs. 1121 

 1122 

compare_BC_methods_allmods_tasmax_summary_v2.R.ps 1123 
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 1124 

Figure 8. As in Figure 7, but for the RMS difference (°C), obtained from 21 models, 1125 

between the original model-predicted future change in daily maximum temperature and the 1126 

model-predicted change after bias correction has been applied. 1127 



58 
 

 1128 

Figure 9.  How bias correction alters model-predicted change in future daily precipitation 1129 

(percentage points), shown for 4 months (rows) and 3 bias correction methods (columns). Values 1130 

are ensemble averaged across all 21 GCMs. 1131 

 1132 

 1133 

compare_BC_methods_allmods_pr_summary_v2.R 1134 
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. 1135 

 1136 

Figure 10. As in Figure 9, but for the RMS difference (percentage points).between the 1137 

original model-predicted future change in daily precipitation and the model-predicted change 1138 

after bias correction has been applied. 1139 
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 1140 

Figure 11. Number of samples per constant-width bin in the logarithm of frequency. The 1141 

period corresponding to the frequency is shown along the top axis. The vertical dashed orange 1142 

line shows the annual cycle. The purple lines show that the number of samples per logarithmic 1143 

frequency bin exceeds 5 at periods less than about 80 days. 1144 
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 1145 

Figure 12a. Left column: proportion (%) of total variance of daily maximum temperature 1146 

that falls in the frequency band whose period is indicated in left hand column, from observations 1147 

over the period 1976-2005. Note that the color range varies substantially by frequency band. 1148 

Middle column: the multi-model mean error (%) for the same quantity in the GCMs, relative to 1149 

the observations. Right column: the multi-model RMSE (%). Figure continues. 1150 

compare_spec_mod_vs_obs_norm_tasmax_summary_v3.R 1151 
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 1152 

Figure 12b. As in Figure 12, but for frequency bands whose periods are indicated in left 1153 

hand column.  1154 
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 1155 

Figure 13a. As in Figure 12a, but for daily precipitation. Figure continues. 1156 
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 1157 

Figure 13b, continued. 1158 
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 1159 

Figure 14. Left column: Normalized spectra of daily maximum temperature from 1160 

observations (red line), CCSM4 (blue line), and CCSM4 after frequency-dependent bias 1161 

correction (green dots and line), taken at the location indicated by the purple cross on inset map, 1162 

coordinates given in the panel title. Right column: Ratio of CCSM4 spectral power to 1163 

observations (blue line) and ratio of CCSM4 to observations after frequency-dependent bias 1164 

correction to observations (green dots and line). 1165 
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 1166 

Figure 15. Same as Figure 14, but for daily precipitation. 1167 
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 1168 

Figure 16. For daily maximum temperature (top row) and precipitation (bottom row), the 1169 

multi-model ensemble average log-RMSE in simulating the observed distribution of variance 1170 

across frequency, both before the frequency-dependent bias correction (left column) and after 1171 

(middle column). Right: histograms of how the frequency-dependent bias correction changes the 1172 

log-RMSE, taken over all models and all locations. 1173 

 1174 

 1175 

/cir1/cmip5_regrid/get_rmse_all_models.R 1176 
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 1177 

Figure 17. Histograms of how much the frequency-dependent bias correction alters the 1178 

daily temperature (left, °C) and precipitation (right two panels). The precipitation results are 1179 

given both as the fraction change (%) and absolute change (mm/day). Results are shown for all 1180 

the models across all points in the conterminous U.S. 1181 
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 1182 

Figure 18. Example one-year time series of daily maximum temperature at the location 1183 

marked by the purple ‘X’ both before (black line) and after (dotted red line) the frequency-1184 

dependent bias correction. Values have had the annual mean removed; the value of the annual 1185 

mean is shown in the upper right part of the panel. The blue line is the time series of the 1186 

correction, i.e., the corrected time series minus original. Values are from CCSM4 in year 2000. 1187 
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 1188 

Figure 19. Example one-year time series of daily precipitation at the location indicated in 1189 

the panel title (longitude, latitude), both before (grey lines) and after (red circle) the frequency-1190 

dependent bias correction. The blue line is the time series of the correction, i.e., the corrected 1191 

time series minus original, with no scaling but offset to be vertically centered in the middle of the 1192 

panel. Values are from CCSM4 in year 2000. 1193 
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 1194 

Figure 20. Multi-model ensemble mean log-RMSE for daily maximum temperature. a) 1195 

the multi-model ensemble average value before any bias correction has been applied. b) With 1196 

only quantile mapping (QM) applied. c) With only frequency-dependent bias correction (FDBC) 1197 

applied. d) With QM applied first, then FDBC. e) With FDBC applied first, then QM. 1198 

 1199 

get_rmse_all_models_bc_srs_both_v2_presentation.R 1200 
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 1201 

Figure 21. As in Figure 20, but for daily precipitation.  1202 

 1203 

 1204 

get_rmse_all_models_bc_srs_both_v2_presentation.R.ps 1205 
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 1206 

Figure 22. Histograms of the change in log-RMSE for the models’ simulation of the 1207 

variance spectra of daily maximum temperature (top row) and precipitation (bottom row) when 1208 

the indicated bias correction method is applied. QM: quantile mapping. FDBC: frequency-1209 

dependent bias correction. Also indicated in each panel are the mean value and percent of values 1210 

greater than zero. Values are pooled over all models and locations. 1211 

 1212 

get_rmse_all_models_bc_srs_both_v2_presentation_hists.R.ps 1213 
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 1214 

Figure 23. Quantile-quantile plots showing how well the GCMs simulate the distribution 1215 

of daily maximum temperature (top) and daily precipitation (bottom), both before (left column) 1216 

and after various combinations (described in Figure 19) of quantile mapping (QM) and 1217 

frequency-dependent bias correction (FDBC). In each panel the dotted green line shows a 1-to-1 1218 

relationship, which would be perfect agreement between the model and observations. The box 1219 

and whiskers show the distribution of model quantile values as indicated in the legend, pooled 1220 

across all models and all locations. Values are obtained from the control period, 1976-2005. 1221 

 1222 
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