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Abstract 20 

Humidity is important to climate impacts in hydrology, agriculture, ecology, energy 21 

demand, and human health and comfort. Nonetheless humidity is not available in some 22 

widely-used archives of statistically downscaled climate projections for the western U.S. In 23 

this work the Localized Constructed Analogs (LOCA) statistical downscaling method is used 24 

to downscale specific humidity to a 1/16° grid over the conterminous U.S. and the results 25 

compared to observations. LOCA reproduces observed monthly climatological values with a 26 

mean error of ~0.5% and RMS error of ~2%. Extreme (1-day in 1- and 20-years) maximum 27 

values (relevant to human health and energy demand) are within ~5% of observed, while 28 

extreme minimum values (relevant to agriculture and wildfire) are within ~15%. The 29 

asymmetry between extreme maximum and minimum errors is largely due to residual errors 30 

in the bias correction of extreme minimum values. The temporal standard deviations of 31 

downscaled daily specific humidity values have a mean error of ~1% and RMS error of ~3%. 32 

LOCA increases spatial coherence in the final downscaled field by ~13%, but the downscaled 33 

coherence depends on the spatial coherence in the data being downscaled, which is not 34 

addressed by bias correction. Temporal correlations between daily, monthly, and annual time 35 

series of the original and downscaled data typically yield values > 0.98. LOCA captures the 36 

observed correlations between temperature and specific humidity even when the two are 37 

downscaled independently.  38 
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1 Introduction 39 

The current generation of Global Climate Models (GCMs) archived as part of the 40 

Climate Model Intercomparison Project version 5 (CMIP5, Taylor et al. 2012) typically have 41 

spatial resolutions on the order of 1 to 2.5 degrees latitude-longitude.  Many practical 42 

applications of climate data in the areas of hydrology, agriculture, ecology, and energy 43 

impacts require finer spatial resolution than afforded by GCMs. To address this need, GCM 44 

data are often transformed from the relatively coarse-resolution original GCM grid to a finer 45 

resolution (O(10 km)) regional grid using information about topography and the land surface 46 

through a process termed downscaling.  47 

Downscaling methods fall into two broad classes. Dynamical methods generate the 48 

fine-resolution data using a computational model similar to the GCM itself but implemented 49 

over a much more limited domain and with higher spatial resolution (for a recent review of 50 

dynamical downscaling, see Rummukainen 2009). Since they use a full computational model, 51 

dynamical methods generate a full suite of climate variables and can simulate future climate 52 

states that are not dependent on direct guidance from historical observations (although even 53 

then, dynamical methods incorporate parameterizations tuned to reproduce historical 54 

conditions, and so might yield a less satisfactory simulation of future conditions). The 55 

downside is that dynamical methods are computationally expensive and require a large 56 

amount of data as boundary conditions. Dynamic models also generally produce data that are 57 

biased with respect to observations, so bias correction is required for many climate impact 58 

studies, which means that the final product may not, in fact, be independent of observations. 59 

Statistical methods infer plausible fine spatial resolution patterns based on historically 60 

observed relationships between large-scale and fine-scale information in the climate variable 61 

being downscaled (for recent reviews, see Fowler et al. 2007 and Maraun et al. 2010). 62 
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Statistical methods assume that certain historically observed statistical relationships between 63 

climate variables will persist into the future, but are orders of magnitude faster than 64 

dynamical methods (although reproducing spatial and multivariate dependencies can make the 65 

computational burden non-trivial).  66 

Constructed analog (CA) techniques (van den Dool, 1994) implement statistical 67 

spatial downscaling by identifying a set (typically 30) of historically observed “analog” days 68 

that are similar to the GCM day being downscaled, then combining those analog days in 69 

different ways (depending on the exact CA method) to produce the final fine-resolution 70 

downscaled field. Standard CA (Hidalgo et al. 2008), Bias Correction with Constructed 71 

Analogs (BCCA, Maurer et al. 2010), and Multivariate Adaptive Constructed Analogs 72 

(MACA, Abatzoglou and Brown, 2012) combine the analog days by performing a weighted 73 

average of the analog days to produce the downscaled field. Pierce et al. (2014) show that this 74 

averaging introduces some undesirable properties, such as too much spatial coherence, a 75 

reduction in extremes, and the production of extraneous “drizzle” days with small amounts of 76 

precipitation. MACA (Abatzoglou and Brown, 2012) addresses some of these problems by 77 

performing an additional bias correction step after the constructed analogs are averaged 78 

together.  79 

Localized constructed analogs (LOCA; Pierce et al. 2014) is a spatial statistical 80 

downscaling technique that avoids these problems by treating the analog days in a different 81 

way: at each point on the fine-resolution grid (1/16° latitude-longitude here), the single analog 82 

day of the 30 that is the best match in the local ~1° latitude-longitude box around the point 83 

being downscaled is used as the analog day for that point. LOCA’s multi-scale matching 84 

(both in the local region around the point and in the wider region used to select the 30 analog 85 

days), and the selection of a single analog at each point instead of 30, avoids some of the 86 
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issues noted above that arise from averaging multiple analog days to obtain the downscaled 87 

field (see Pierce et al. 2014 for details). 88 

This work focusses on downscaling humidity. Humidity variations are important for 89 

many climate impacts; for instance, a misrepresented humidity field can degrade future 90 

projections of runoff in critical water resource regions (Pierce et al. 2013). Humidity affects 91 

plants through the tendency of stomata to close under dry conditions (e.g. Friend 1995) and 92 

influences the chance of having wildfires (e.g. Brown et al. 2004). Humidity is an important 93 

factor in perceived human comfort as a function of temperature (e.g., Thom 1959), since 94 

sweat cannot cool the body as easily in humid conditions. Therefore humidity affects energy 95 

use through air conditioning demand (e.g., Mirasgedis et al. 2006). Many of these factors are 96 

important in the western U.S., yet a major archive of statistically downscaled climate 97 

simulations for the western U.S., hosted at the Lawrence Livermore National Laboratory’s 98 

“green data oasis” (http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html; 99 

Maurer et al. 2014), does not include humidity as one of the downscaled variables. To our 100 

knowledge only MACA (Abatzoglou and Brown, 2012) provides a publically available 101 

archive of statistically downscaled humidity data for the western U.S. One reason MACA is 102 

able to do so is because MACA can downscale multiple variables simultaneously, in this case 103 

daily temperature and humidity. Such an approach can produce more coherent downscaled 104 

fields than found when downscaling the variables separately (Abatzoglou and Brown, 2012). 105 

The purpose of this work is to demonstrate the process of downscaling humidity using 106 

LOCA and to evaluate the quality of the resultant downscaled humidity field. LOCA is a 107 

spatial downscaling processes, and does not, in and of itself, incorporate bias correction. 108 

Accordingly, our primary evaluation is based on downscaling an observed field that has first 109 

been coarsened to typical GCM spatial resolution. This avoids the necessity for a bias 110 

correction step that is extrinsic to LOCA, and so provides the clearest picture of LOCA’s 111 
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capabilities. However, spatial downscaling is typically applied to GCM data, so we 112 

additionally show results from downscaling GCM data that has first been bias corrected. Our 113 

evaluation includes examining monthly means, the temporal standard deviation of daily 114 

values by season, 1-in-1 and 1-in-20 year extreme values, and measures of spatial coherence. 115 

The selection of these validation measures is dictated by the application areas of interest noted 116 

above. Monthly means and extreme high humidity values affect energy use, extreme low 117 

values affect wildfires, and the spatial coherence of the humidity field can influence the 118 

simulation of runoff in geographically adjacent basins, influencing a hydrological simulation 119 

of drought and flooding. 120 

The rest of this paper is structured as follows. In section 2 we describe the data and 121 

methods used in this study, including a fuller explanation of the LOCA process. Section 3 122 

shows the results, including LOCA downscaling performance for specific humidity using 123 

univariate downscaling and the issue of multivariate downscaling. The results are discussed in 124 

section 4, including comments on downscaling relative versus specific humidity, and a 125 

summary and conclusions are given in section 5. 126 

2 Data and methods 127 

2.1 Observed data 128 

Statistical downscaling schemes such as LOCA require observations to train the 129 

model. There are limited options available for observed gridded humidity data sets over the 130 

continental U.S. Two products that we are aware of are Daymet (Thornton et al., 2012) and 131 

the University of Idaho gridded surface meteorological dataset (Abatzoglou, 2012; http://-132 

nimbus.cos.uidaho.edu/METDATA/). The former supplies vapor pressure, while the latter 133 

supplies specific humidity. The CMIP5 GCMs differ in the humidity variable(s) that are 134 

archived, but generally speaking many models have near-surface specific humidity, while few 135 
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supply relative humidity and almost no models supply vapor pressure. Accordingly, we use 136 

the University of Idaho specific humidity data for this work. Daily specific humidity values 137 

are given on a 4 km spatial grid over the period 1980-2012. For consistency with previous 138 

LOCA downscaling work (Pierce et al. 2014) the data were aggregated to the 1/16° latitude-139 

longitude (~6 km) grid used by Livneh et al. (2014).  140 

As described in Abatzoglou (2012), the University of Idaho data set combines data 141 

and techniques from the PRISM project (Daly et al. 2008), which provides good spatial 142 

coverage, with data from the NLDAS-2 (Mitchell et al. 2004) reanalysis, which provides good 143 

temporal coverage. It should be noted that due to the sparsity of station humidity 144 

observations, the humidity data should probably be viewed more as a topographically aware 145 

interpolation augmented with reanalysis rather than a gridded version of a directly observed, 146 

well-sampled field. However the data compare well to the station observations that are 147 

available (Abatzoglou 2012), and for our purpose (evaluating LOCA downscaling) minor 148 

errors in the training data set are irrelevant, as the downscaling should reproduce in the 149 

downscaled data the statistics of whatever observations it is supplied with, correct or not. 150 

In section 3 where specific humidity is related to daily minimum and maximum 151 

temperatures, we use the University of Idaho temperature data in preference to other data 152 

sources so that the temperature fields are as consistent as possible with the humidity fields. 153 

2.2 Global climate model data 154 

As our example GCM we use data from the Community Climate System Model, 155 

version 4 (CCSM4; Gent et al. 2011), produced by the National Center for Atmospheric 156 

Research (NCAR) and archived in the CMIP5 data base. Native model resolution is 157 

1.25°x0.94° longitude-latitude, using a finite volume dynamical core, and the model includes 158 

an updated version of the Community Land Model (CLM version 4; Lawrence et al. 2011). 159 

CCSM4 shows much better El Nino/Southern Oscillation (ENSO) statistics compared to its 160 
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predecessor, likely due to an improved representation of deep convection (Gent et al. 2011), 161 

which is advantageous for our comparison since ENSO affects the climate over parts of the 162 

U.S. The model provides daily near-surface specific humidity values for run 6 (“r6i1p1” in 163 

CMIP5 jargon), which we used over the period 1950-2005. 164 

2.3 The Localized Constructed Analogs (LOCA) spatial downscaling process 165 

The basic physical assumption of constructed analog spatial downscaling techniques is 166 

that meteorological processes produce cyclostationary statistical relationships between area-167 

averaged (0.5-2 degrees latitude/longitude) and point measurements of a climatological field. 168 

Global climate model outputs are then considered to be estimates of area-averaged quantities, 169 

and the observed relationships between area-averaged fields and point values appropriate to 170 

the time of year being downscaled are used to infer a plausible distribution of point values 171 

from the model output. In this sense the LOCA spatial downscaling technique in and of itself 172 

is a “perfect prog“ approach (e.g., Klein and Glahn 1974), although in practice a climate 173 

model field is typically bias corrected before being passed to LOCA. 174 

The standard constructed analogs process is conceptually straightforward: to spatially 175 

downscale a variable for a particular model day, the 30 observed days that best match 176 

(smallest spatial RMSE) the model day over the entire domain are found, then optimal 177 

weights for the 30 observed days are computed such that the weighted linear combination best 178 

reproduces the model day. Finally, the downscaled field  is obtained by combining the 179 

original fine-resolution observed fields using those same optimal weights. 180 

LOCA is nearly as straightforward: to spatially downscale a model day, the 30 181 

observed days  that best match the model day in the wider region around the point being 182 

downscaled are found (these are termed the analog days). The wider region is determined by 183 

examining the spatial map of historically observed temporal correlations, by season, between 184 

the variable at the point being downscaled and that same variable at all other locations in the 185 
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domain; locations where the correlation is positive are included in the wider region. 186 

Elsewhere, the agreement or disagreement between the model field and observed day is not 187 

considered. This approach lends a natural domain-independence to LOCA that is not found in 188 

earlier constructed analog methods, which require matching the analog days over the entire 189 

domain being downscaled, leading to challenges as the domain size increases. 190 

 Next, the single one of the 30 analog days that best matches (least RMSE) the model 191 

day in the local neighborhood of the point being downscaled is identified. For the local 192 

matcing we use a 1 degree box; tests with boxes of different sizes showed little difference 193 

when the box was half or twice this size. This multi-scale matching (over both the wider 194 

region, so synoptic scale patterns are matched, and locally around the point being 195 

downscaled) is one of the key aspects of LOCA, and ensures that the final downscaled field is 196 

consistent with the day being downscaled on both local and synoptic length scales.  197 

The final downscaled value is the value from the best-matching single analog day, 198 

scaled so that its amplitude matches the amplitude of the model day being downscaled. For 199 

example, if temperature is being downscaled and the model gridcell has a 5°C temperature 200 

anomaly, but the best matching observed day shows only a 4°C anomaly when averaged over 201 

the model gridcell, then the value at the point being downscaled is increased by 1°C. For full 202 

details on the LOCA method, see Pierce et al. 2014. 203 

2.4 Experimental design 204 

2.4.1 Downscaling approach 205 

Our goal is to evaluate the LOCA spatial downscaling scheme, which, like in other 206 

constructed analog approaches, is a separate and independent step from bias correction. We 207 

downscale only over the historical period since our purpose is to validate against 208 

observations. Bias correction is not of direct interest here (cf. Pierce et al. 2015), in contrast to 209 
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some other statistical downscaling schemes that combine spatial downscaling and bias 210 

correction in a single step. To assess the quality of the LOCA spatial downscaling step itself, 211 

distinct from problems in the GCM data or an independently implemented bias correction 212 

processes, two separate evaluations are conducted.  213 

First, the observations are aggregated to the same 1x1 degree latitude-longitude grid 214 

used for the GCM data, then downscaled to 1/16° resolution (details in section 2.3.3). The 215 

advantage of downscaling the 1x1 degree coarsened observations is that it is known in 216 

advance that the statistics of the coarse resolution data are correct, therefore no bias correction 217 

is needed, and the results can be directly compared to the original fine-resolution 218 

observations. Any deficiencies in the final downscaled fields must be due to shortcomings of 219 

the spatial downscaling process alone. 220 

For comparison, we also show results from the coarsened observations downscaled 221 

with an earlier constructed analog technique, BCCA (Maurer et al. 2010). BCCA was chosen 222 

for comparison because LOCA was developed to mitigate some of the problems that arise 223 

when multiple analog days are averaged together, as BCCA does. 224 

Although examining the results of downscaling coarsened observations is an ideal way 225 

to evaluate a spatial downscaling scheme, in practice downscaling is used on GCM output. 226 

Therefore, our second evaluation uses data from an example GCM that is first bias corrected 227 

and then spatially downscaled by LOCA, and statistical properties of the result are compared 228 

to observations (details in section 2.3.2). Although this conflates errors in the bias correction 229 

with the results of interest here--the LOCA spatial downscaling--it nonetheless represents the 230 

typical use case for downscaled climate model data. 231 

In LOCA, temperature is downscaled as an anomaly and precipitation is downscaled 232 

as an absolute value. In other words, when temperature is downscaled, the long-term climatic 233 

mean for that day is first computed, then the departure from the mean for any particular 234 
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location and time (i.e., the anomaly) is calculated. This field of anomalies is then spatially 235 

downscaled. When precipitation is downscaled, no such transformation is performed. The 236 

reason for the distinction is so that no final downscaled precipitation value is less than zero. 237 

Were precipitation downscaled as an anomaly, this could not be guaranteed except by 238 

discarding negative values after the final downscaled field was constructed. Since specific 239 

humidity likewise cannot be less than zero, it was downscaled as an absolute value as well. 240 

2.4.2 GCM bias correction on a common 1x1 degree grid  241 

Downscaling typically starts with GCM data, which often fail to reproduce the 242 

statistics of the observed field. Because of this the GCM data need to be bias corrected before 243 

a spatial downscaling step such as LOCA is applied. It is advantageous if GCMs, which have 244 

a diversity of native grid resolutions, are bias corrected on a common grid rather than their 245 

native grids. This prevents a relatively high resolution GCM from being informed by more 246 

observed information during the bias correction process than a low resolution GCM. For 247 

conformity with the extensive archive of downscaled data from Maurer et al. (2014), we 248 

regrid the CCSM4 GCM data to the same 1x1 degree latitude-longitude employed by Maurer 249 

et al. (2014) and bias correct it at the 1x1 degree resolution. 250 

Although our interest here is in evaluating the LOCA spatial downscaling scheme 251 

rather than the independently applied bias correction, for completeness we examined the 252 

effects of LOCA spatial downscaling after applying three different bias correction methods to 253 

the GCM data: 1) quantile mapping (e.g., Panofsky and Brier 1968; Wood et al. 2002; 254 

Thrasher et al. 2012) followed by adjustments of the specific humidity time series in 255 

frequency space to make the model’s variance spectrum better match that observed (details in 256 

Pierce et al. 2015). Quantile mapping has been widely used as a bias correction technique for 257 

climate model data downscaled to the western U.S. (e.g., the Maurer et al. 2014 archive noted 258 
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above). 2) Equidistant quantile matching (EDCDFm; Li et al. 2010), which bias corrects by 259 

adding a model-estimated change in distribution to the observed distribution of a climate 260 

variable. 3) The Cumulative Distribution Function transform method (CDF-t; Michelangeli et 261 

al. 2009), which applies to the GCM data functions that transform the model’s CDF to that 262 

observed. The results with all three methods are very similar. Results from EDCDFm and 263 

CDF-t, in particular, are almost indistinguishable, and typically showed only small differences 264 

from QM on most measures. Accordingly, results from only QM and EDCDFm and displayed 265 

below; equivalent plots for CDF-t are given in the supplementary material. Note that the 266 

differences between these bias correction methods become more important in future 267 

projections; however, since we want to compare to observed data in this work, results are only 268 

considered over the historical era. 269 

As is the case when bias correcting precipitation (Pierce et al. 2015), a minimum value 270 

is specified below which the spectral adjustment is not applied; we use a threshold of 0.0015 271 

kg/kg for specific humidity. 272 

2.4.3 Downscaling coarsened observations using cross validation 273 

Bias correction is not perfect, so any residual differences between the statistics of the 274 

observations and final downscaled model field could arise from uncorrectable problems with 275 

the original GCM data, limitations in the bias correction process, or flaws in the downscaling 276 

technique itself. This makes it hard to evaluate the quality of a downscaling technique using 277 

GCM data alone. To get a better idea of the quality of the LOCA downscaling step itself, 278 

distinct from problems in the original GCM data or bias correction processes, we also 279 

downscale the observations aggregated to the same 1x1 degree latitude-longitude grid used 280 

for the GCM data. 281 
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In order to fairly compare the downscaled version of the coarsened observations to the 282 

original fine-resolution observations, the statistical downscaling model must be trained on a 283 

different data set than is used to verify the downscaling quality. This is often accomplished by 284 

partitioning the observations into independent training and verification periods. Here we only 285 

have ~30 years of observed data, so this approach is not practical. Instead we downscale using 286 

cross-validation.  Cross-validation is achieved by requiring the selected analog days to be far 287 

removed from the target day being downscaled. I.e., when downscaling the coarsened 288 

representation of an observed day, no analog day can be chosen within +/- 320 days of the day 289 

being downscaled. This prevents information from any observed day from being used 290 

simultaneously in both training and validation. The autocorrelation of daily specific humidity 291 

in the CONUS typically drops into the noise around zero after ~100 days, so the 320 day 292 

separation requirement should be adequate for the cross-validation. Furthermore, 320 days is 293 

the minimum allowed separation; on average, it will be many years since we use a 30-year 294 

training data set. 295 

Evaluating the coarsened observations downscaled with cross-validation gives the 296 

clearest picture of the qualities of the downscaling process itself, independent of problematic 297 

GCM data or deficiencies in the bias correction. This is complementary to evaluating the bias 298 

corrected and downscaled data from a GCM, which gives the clearest picture of the quality of 299 

the final downscaled product as it is typically generated in practice. We use both approaches 300 

in an attempt to provide a complete picture of the downscaling’s quality. 301 

3 Results 302 

3.1 Downscaling the coarsened observations with cross-validation 303 

Figure 1 shows selected monthly mean specific humidity fields from the observations 304 

(left column), and the error after the coarsened observations are downscaled to 1/16° using 305 
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cross-validation with BCCA (middle column) and LOCA (right column). Errors using LOCA 306 

are generally small, on the order of 0.02% in the mean and < 1% RMS, where RMS errors are 307 

calculated over the spatial extent (here and in the following figures). Errors and RMS values 308 

in the other months and annual mean are similar (not shown). In sum, LOCA preserves the 309 

monthly and annual mean humidity values accurately in the downscaled fields. In the monthly 310 

means, BCCA and LOCA do a comparable job. 311 

The temporal standard deviation of observed daily specific humidity values, by 312 

season, is shown in the left column of Figure 2. Variability is lowest in the Rocky Mountain 313 

region in winter, and highest in the Gulf Coast region during autumn. Errors after 314 

downscaling with BCCA are shown in the middle column, and errors after downscaling with 315 

LOCA are shown in the right column. LOCA captures the variability well, with mean errors 316 

of ~0.3% and RMS errors of about 1%. Although BCCA did well with the monthly means, it 317 

does a poorer job reproducing the variability, with significant underestimation of the values in 318 

the western part of the U.S., and the Southeastern seaboard in the summer. 319 

In addition to monthly means and daily variability, extreme daily values are also 320 

relevant to evaluating the quality of the downscaling. Both minimum and maximum humidity 321 

are of interest, since low humidity affects wildfire risk and agriculture, while high humidity 322 

affects human health/comfort and air conditioning energy demand. Figure 3 shows the 1-day 323 

in 1- and 20-year maximum value of humidity from observations (left column), and the error 324 

(%) after downscaling with BCCA (middle column) and LOCA (right column). The main 325 

observed large-scale feature evident in the maximum humidity pattern is a pronounced east-326 

west divide separating the higher maximum humidity eastern and lower maximum humidity 327 

western states, with extreme high values typically exceeding 0.018 kg/kg in the eastern U.S. 328 

versus less than 0.013 kg/kg in the western U.S. The highest values in the conterminous U.S. 329 

are found along the Gulf Coast in the 1-day-in-1-year maximum humidity fields, while the 1-330 
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day-in-20-years maximum field shows appreciable penetration of maximum values inland as 331 

far as southern Minnesota. LOCA reproduces the extreme maximum patterns and values quite 332 

well in both cases, with mean errors of less than 0.5% and RMS errors on the order of 1-2%. 333 

BCCA shows larger errors, especially in the western half of the U.S. 334 

Minimum extreme specific humidity values are shown in the same format in Figure 4 335 

(note the change in units, which are 1/10 those for the maximum specific humidity in Figure 336 

3). The lowest observed values are found in the upper Midwest, associated with outbreaks of 337 

cold, dry winter air. Interestingly, in comparing Figures 3 and 4, the southern parts of 338 

California and Arizona sometimes experiences extremely low specific humidity events 339 

(presumably these occur in fall and winter Santa Ana events) as well as extremely high 340 

specific humidity events (likely during monsoon moisture pulses). Errors after downscaling 341 

with LOCA (right column) are larger in the 1-day-in-20-year minimum extreme specific 342 

humidity field than found in the other fields, especially in central California, where errors can 343 

exceed 30% in spots. However errors in BCCA are much larger still, especially in the 1-in-20 344 

year extreme. 345 

The spatial coherence of the downscaled field can be a sensitive indicator of the 346 

quality of the downscaling. Pierce et al. (2014) demonstrated how averaging together multiple 347 

analog days, as done in CA and BCCA, tends to inflate the spatial coherence of the 348 

downscaled field. Spatial coherence here is evaluated in terms of how quickly the standard 349 

deviation of daily values declines as progressively more gridcells are combined into a 350 

regional average (cf. Gutmann et al. 2014). A field that has high spatial coherence will show a 351 

more gradual decline in standard deviation as progressively more surrounding gridcells are 352 

incorporated into the regional average than a field with low spatial coherence. The slope of 353 

the relationship between the number of points included in the spatial average and the standard 354 

deviation then becomes a metric of spatial coherence, with more negative values indicating 355 
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low spatial coherence and less negative values indicating high spatial coherence. Values are 356 

nondimensional since they are evaluated as the best-fit power law relationship between the 357 

standard deviation and number of points included in the averaging (e.g., Lovejoy et al. 2008). 358 

The result of this analysis is shown in Figure 5 for the observations (left), and the error after 359 

downscaling the coarsened observations with BCCA (middle) and LOCA (right). The errors 360 

are shown as a percentage ((model – observations)/abs(observations)*100). LOCA generally 361 

reproduces the observed pattern reasonably well, although downscaled values are generally 362 

about 13% less negative than observed, indicating somewhat increased spatial coherence in 363 

the downscaled data compared to the original field. BCCA, by contrast, has about twice the 364 

error as LOCA.  365 

A final, direct evaluation of the skill of the downscaling is performed by correlating, at 366 

each point, the downscaled time series with the original data (Figure 6). This is done with and 367 

without the annual cycle and for three levels of temporal averaging to show how the results 368 

vary as a function of time scale. The left column shows results using BCCA, and the right 369 

column shows results using LOCA. The top row is computed using the original daily time 370 

series, including the annual cycle; the second row using daily anomalies; the third row using 371 

monthly anomalies; and the bottom row using yearly anomalies. Correlations tend to be 372 

highest in the Midwest, with lower values along the west coast and (particularly for the yearly 373 

anomalies) along the eastern seaboard. However with LOCA all values are high, with all 374 

locations having correlations of 0.86 or greater and generally greater than 0.94. Values are 375 

somewhat lower using BCCA, especially in the western half of the U.S. 376 

3.2 Downscaling the CCSM4 GCM 377 

As described in section 2.3.2 we use three different bias correction methods (quantile 378 

mapping [QM], EDCDFm, and CDF-t) on the CCSM4 GCM data before the LOCA 379 
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downscaling. Results from EDCDFm and CDF-t are almost indistinguishable, and differ little 380 

from results using QM, so the CDF-t results are relegated to the supplementary information. 381 

Selected monthly mean values obtained using LOCA to downscale the QM and 382 

EDCDFm bias corrected specific humidity model data to the 1/16° grid are shown in Figure 7. 383 

(Results with CDF-t bias correction are shown in supplementary information figure S1.) 384 

Mean errors are less than 0.6%, while RMS errors are about 2%. Although these values are 385 

small, it is worth noting that they are nonetheless considerably larger than the errors found 386 

when downscaling the coarsened observations (Figure 1), where the mean error was less than 387 

0.03% and the RMS error less than 1%. As discussed in section 2.3.2, the difference between 388 

these two cases arises from errors in the GCM data that are not completely corrected by the 389 

bias correction schemes. To put this result into context, Figure 8 shows the CCMS4 GCM 390 

data before bias correction. Mean errors are on the order of 25%, and RMS errors up to ~30%. 391 

So the bias correction methods greatly reduce both the mean and RMS errors, but do not 392 

completely eliminate them. 393 

The seasonal standard deviation of daily specific humidity values obtained when 394 

downscaling the QM and EDCDFm bias corrected CCSM4 output is shown in Figure 9. 395 

(Results with CDF-t bias correction are shown in supplementary information figure S2.) 396 

Mean errors in the variability are on the order of 3%, and RMS errors similar. Again, both are 397 

considerably larger than seen when downscaling the coarsened observations using cross-398 

validation (Figure 2), yet the original CCSM4 GCM has errors on the order of 50% in Dec-399 

Jan-Feb and 25% in the other months (not shown). So the bias correction methods used here 400 

give large, but not complete, improvements. 401 

The 1-day-in-1- and 20-year extreme maximum specific humidity values obtained 402 

when downscaling the CCSM4 GCM data are shown in Figure 10. (Results with CDF-t bias 403 

correction are shown in supplementary information figure S3.) Errors are shown as a 404 
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percentage with respect to the observed value; supplementary information figure S5 shows 405 

errors as actual values. Downscaled extreme values are in reasonable agreement with the 406 

observations, with mean errors of ~0.5% and RMS errors of ~4%, although again the errors 407 

are about twice those seen when downscaling the coarsened observations (Figure 3). The 408 

Midwest through the upper Midwest region is especially prone to higher values in the 409 

downscaled CCSM4 GCM field than observed.  410 

Downscaled extreme minimum humidity values are shown in Figure 11. (Results with 411 

CDF-t bias correction are shown in supplementary information figure S4; errors shown as 412 

actual values rather than as percentages are given in figure S6.) The RMS errors in the 413 

extreme minimum field are considerably higher than in the extreme maximum field, with a 414 

RMS error of 10-30% (compared to < 5% for extreme maximum values). The bias correction 415 

used also affects this field much more than the maximum daily specific humidity. Because the 416 

LOCA downscaling step generates notably better extreme minimum values when supplied 417 

with known-correct coarse data to downscale (Figure 4), we can infer that the reason for the 418 

relatively larger errors in Figure 11 is because of the bias correction step. I.e., bias correction 419 

of extreme minimum specific humidity values is more problematical than the bias correction 420 

of the extreme maximum values. The error measure shown here is accentuated because it is 421 

computed as a ratio, so there is a larger discrepancy between the errors of the extreme 422 

minimum and maximum values than would be seen if the errors were evaluated as a 423 

difference. In other words, a constant specific humidity error (as measured in kg/kg) 424 

represents a larger percentage error of a small base value (arid conditions) than of a large base 425 

value (humid conditions). 426 

The spatial coherence of the daily specific humidity fields downscaled from CCSM4 427 

is shown in Figure 12. The metric is the same as that described previously for Figure 5. 428 

Unlike the case when downscaling coarsened observations (Figure 5), where the spatial 429 
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coherence was found to be increased by about 13% everywhere, when downscaling CCSM4 430 

the coherence is lower than observed through the central part of the U.S. This is a feature of 431 

the CCSM4 GCM itself, and is little affected by the bias correction, which is implemented 432 

independently at each point and so does not take spatial patterns into account. 433 

3.3 Multivariate downscaling 434 

The previous results have been obtained with univariate downscaling, i.e., 435 

independently downscaling specific humidity to the 1/16° grid without regard to any 436 

relationship with other variables, such as temperature. This is different from the treatment in 437 

MACA (Abatzoglou and Brown, 2012), where humidity is downscaled in a multivariate 438 

scheme in conjunction with temperature. Abatzoglou and Brown (2012) focus on relative 439 

humidity, which has a stronger link to temperature than specific humidity, which is used here. 440 

However specific humidity in non-arid locations is still linked to temperature through the 441 

Clausius-Clapeyron relationship, so this leaves open the question of whether LOCA-442 

downscaled specific humidity fields reproduce observed correlations with temperature. 443 

The relationship between LOCA-downscaled temperature and LOCA-downscaled 444 

specific humidity is evaluated in Figure 13, which shows the correlation of daily specific 445 

humidity anomalies with daily maximum temperature anomalies (by season), and Figure 14, 446 

which shows the same result but using daily minimum temperature anomalies. In both figures 447 

the left column shows the observed correlations (observed temperature is taken from the 448 

University of Idaho; see section 2.1), while the right column shows the result using coarsened 449 

(to the 1x1 degree grid) temperature and specific humidity that were subsequently downscaled 450 

using LOCA. The correlation patterns are very similar between the original observations and 451 

downscaled data; spatial pattern correlations between the two are > 0.99.  452 

We conclude that LOCA can adequately capture the observed relationship between 453 

temperature and specific humidity even when both variables are downscaled independently, at 454 
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least in the case that the supplied coarse resolution data being downscaled have the correct 455 

multivariate relationships in the first place. In the event that GCM data are being downscaled, 456 

and the GCM itself does not simulate correct temperature-humidity relationships, LOCA 457 

downscaling will not fix that problem. This does not mean that multivariable downscaling is 458 

never of value in LOCA downscaling; Pierce et al. (2014) demonstrate that it is needed for 459 

correctly computing daily minimum temperature as the difference between downscaled daily 460 

maximum temperature and downscaled diurnal temperature range. 461 

4  Discussion 462 

Our analysis shows that LOCA does a credible job downscaling daily fields of specific 463 

humidity over the continental U.S. Compared to BCCA, an earlier constructed analog method 464 

that has been widely used in applications across the western U.S., LOCA has a very similar 465 

representation of the monthly mean fields, but shows improvements in the simulation of 466 

variability (e.g., monthly standard deviation of daily values, 1-day-in-1 and -20 year extreme 467 

values). Since many application areas are concerned with the impact of extreme events, we 468 

consider this to be a valuable improvement. 469 

Different applications can require different humidity variables, such as relative vs. 470 

specific humidity. In this work we have examined specific humidity since this is the humidity 471 

variable most consistently available on a daily time step in the CMIP5 model data archive. 472 

From a downscaling point of view, one of the key differences between relative and specific 473 

humidity is relative humidity’s stronger relationship with temperature and how that can be 474 

preserved in the downscaling process. We showed here that LOCA captures the observed 475 

correlations between temperature and specific humidity, at least at the seasonal timescale, so a 476 

fuller examination of the ability to downscale relative humidity would be warranted. The 477 

LOCA process itself can accomplish multi-variate downscaling (temperature and humidity 478 
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together) by choosing analog days that are the best weighted match to multiple fields 479 

simultaneously. 480 

Although no full multivariate-downscaled estimate of relative humidity has been 481 

attempted here, the societal importance of some applications that are dependent on relative 482 

humidity motivates us to do a preliminary evaluation using the downscaled data currently 483 

available, which are specific humidity and daily maximum temperature. The heat index 484 

(Steadman 1979; Rothfusz, 1990) makes a good application to evaluate, since it is a widely-485 

known combination of temperature and relative humidity into an index that has bearing on 486 

human health and comfort.  487 

We evaluated LOCA’s ability to spatially downscale the heat index in two ways. First, 488 

we used LOCA’s downscaled fields of coarsened observed specific humidity and daily 489 

maximum temperature to estimate relative humidity and thus the heat index using a constant 490 

sea level pressure (SLP) of 1020 hPa, and compared this to the heat index calculated from 491 

observed estimates of daily maximum temperature and minimum relative humidity 492 

(Abatzoglou 2012). This approach directly compares the LOCA results to our best estimate of 493 

the observed heat index (calculated with relative humidity), but has the drawback that it 494 

convolves errors in estimating relative humidity from specific humidity with errors in spatial 495 

downscaling, where only the latter are of interest here. We therefore also compared the 496 

LOCA-downscaled heat index to the observed heat index estimated from observed specific 497 

(instead of relative) humidity and daily maximum temperature computed with the same 498 

assumed fixed SLP as used in the LOCA calculation. This approach more clearly isolates 499 

errors due to the LOCA spatial downscaling scheme. 500 

Results are shown in Figure 15 as the average number of days per year that the heat 501 

index exceeds thresholds of either the 27°C (top two rows) or 35°C (bottom two rows). 502 

LOCA reproduces the spatial pattern of exceedance using the 27°C quite well, with errors of 503 
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only a few days/year, or typically less than 10% (although percentage values can become 504 

larger in mountainous western locations where the actual number of days/year is small). At 505 

the higher threshold errors are larger, especially in the great plains and southeastern U.S. 506 

(third row). However, when the downscaled field is compared to the observed field estimated 507 

using specific humidity in the same way as the LOCA field is estimated, errors are again 508 

small (bottom row). This suggests that the LOCA spatial downscaling step is not introducing 509 

errors, but that at the higher heat index threshold the assumption of fixed atmospheric 510 

pressure in the relative humidity estimation becomes problematical. 511 

Like all statistical downscaling methods, LOCA makes stationarity assumptions that 512 

may be violated in a future that is subject to anthropogenic climate change. The main 513 

assumption of constructed analog-based techniques such as BCCA and LOCA is that the 514 

characteristic spatial patterns of climate variables remain unchanged in the future (although 515 

changes in the amplitude, frequency, or duration of spatial patterns can be captured). As a 516 

contrived example, imagine a domain that is smaller than a GCM gridcell, and historically has 517 

always experienced low humidity in the southern part of the domain and high humidity in the 518 

northern part of the domain. However, climate change alters the typical wind patterns such 519 

that in the future, the northern and southern parts of the domain generally have the same 520 

humidity. LOCA would have trouble reproducing that change if there were few or no 521 

historical analog days that showed that spatial pattern of humidity values. 522 

5 Summary and Conclusions 523 

The purpose of this work has been to evaluate the ability of the Localized Constructed 524 

Analogs (LOCA) statistical downscaling technique to spatially downscale specific humidity 525 

over the conterminous U.S. to a 1/16° spatial resolution, and examine whether a multivariate 526 

approach is required when downscaling specific humidity with LOCA. 527 
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Humidity is an important variable for applications to wildfire, agriculture, air 528 

conditioning energy demand, and human health and comfort, but is not always included in 529 

publically available archives of statistically downscaled climate simulations. We have 530 

evaluated the quality of the downscaling by comparing observed estimates of daily specific 531 

humidity (Abatzaglou 2012) to a downscaled version of the observations first coarsened to a 532 

1x1 degree latitude-longitude grid, which isolates the effect of the LOCA downscaling step on 533 

the quality of the final downscaled result, and to downscaled specific humidity fields from the 534 

CCSM4 GCM, which illustrates how well the entire bias correction/downscaling process 535 

works for a typical GCM. We find: 536 

 LOCA reproduces the observed monthly mean climatology of specific humidity 537 

with a mean error typically less than ~0.5% and a RMS error of typically ~2%. 538 

About half of the final error is attributable to residual errors in the GCM data after 539 

bias correction. (Before bias correction, GCM errors are on the order of ~25%, on 540 

average across the domain.) 541 

 The temporal standard deviation of daily specific humidity values matches the 542 

observed value reasonably well, with mean errors of ~1% and RMS errors of ~3%. 543 

 Extreme (1-day in 1- and 20-years) maximum specific humidity values, which are 544 

relevant to human health and comfort and air conditioning energy demand, are 545 

typically within ~5% of observed. Extreme minimum values, which are relevant to 546 

wildfire and agriculture, are typically within ~15% of observed. The relatively 547 

worse performance of the minimum extremes compared to the maximum extremes 548 

is largely attributable to residual errors in the bias correction. 549 

 LOCA increases the spatial coherence of the downscaled specific humidity field 550 

by ~13%, using the metric described in this work. We found that this was reversed 551 
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in the downscaled GCM results in the central U.S. (less spatial coherence than 552 

observed), since the GCM simulated more spatial variability there than observed. 553 

 Correlations between observed and downscaled time series of specific humidity 554 

typically are greater than 0.98, although values tend to be slightly lower in the 555 

western third of the conterminous U.S. then in other locations. 556 

 LOCA accurately reproduces observed correlations between daily temperature 557 

(minimum and maximum) and specific humidity, even when temperature and 558 

specific humidity are downscaled independently.  559 

Overall, these results show that the LOCA downscaling technique can provide useful 560 

high spatial resolution specific humidity fields from global climate model data, fields that can 561 

be applied to problems in hydrology, ecology, and energy demand. 562 
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 664 

Figure 1. Left column: monthly mean specific humidity (kg/kg * 100) from the Abatzoglou 665 

observations. Middle column: error (%) in the monthly mean specific humidity after the coarsened 666 

observations are downscaled with BCCA. Right column: error (%) after downscaling with LOCA.  667 
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 668 

Figure 2. Left column: temporal standard deviation (kg/kg * 1000) of 1/16° daily specific 669 

humidity, by season, from the Abatzoglou observations. Middle column: error (%) in downscaled 670 

values with respect to observations after downscaling with BCCA. Right column: error (%) after 671 

downscaling with LOCA. 672 
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 673 

Figure 3. Left column: maximum 1-day-in-1-year (top row) and 1-day-in-20-years (bottom 674 

row) value of specific humidity (kg/kg * 100) from the Abatzoglou observations. Middle column: the 675 

error (%) in the downscaled value with respect to observations after downscaling with BCCA. Right 676 

column: error (%) after downscaling with LOCA. 677 
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 678 

Figure 4. As in Figure 3, but for minimum daily specific humidity (kg/kg * 1000) rather than 679 

maximum.   Note that units are 1/10 those for maximum daily specific humidity (Figure 3).  680 
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 681 

Figure 5. Left column: a metric of spatial coherence (nondimensional) for daily values of 682 

specific humidity in the Abatzoglou observations More negative values (blue) indicate low spatial 683 

coherence; less negative values (brown) indicate high spatial coherence. See text for definition of the 684 

metric plotted. Note nonlinearity of the color spacing. Middle column: error (%) with respect to the 685 

observed value after the coarsened observations are downscaled with BCCA. Right column: error (%) 686 

after downscaling with LOCA.  687 



 34

 688 

Figure 6. Temporal correlation at every point between the original observed specific humidity 689 

fields and the coarsened observations downscaled with either BCCA (left column) or LOCA (right 690 

column). Top row: evaluated with full time series of daily values including the annual cycle. Second 691 

row: evaluated with daily anomalies. Third row: evaluated with monthly anomalies. Bottom row: 692 

evaluated with yearly anomalies. 693 
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 694 

Figure 7. Left column shows the monthly mean specific humidity (kg/kg * 100) from 695 

observations for selected months. Middle column shows the error (%) after bias correcting the CCSM4 696 

data with quantile mapping and spatial downscaling with LOCA. Right column shows similar, but 697 

using EDCDFm bias correction. 698 
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 699 

Figure 8. As in Figure 7, but for the original CCSM4 GCM data on the 1x1 latitude-longitude 700 

grid before any bias correction is applied. 701 
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 702 

Figure 9. Left column shows the observed temporal standard deviation (kg/kg * 1000) of daily 703 

specific humidity, by season. Middle column shows the error (%) after bias correcting the CCSM4 704 

data with quantile mapping and spatial downscaling with LOCA. Right column shows similar, but 705 

using EDCDFm bias correction. 706 
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 707 

Figure 10. Left column shows the observed maximum 1-day-in-1-year (top row) and 1-day-in-708 

20-years (bottom row) value of specific humidity (kg/kg * 100). Middle column shows the error (%) 709 

after bias correcting the CCSM4 data with quantile mapping and spatial downscaling with LOCA. 710 

Right column shows similar, but using EDCDFm bias correction. 711 
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 712 

Figure 11. As in Figure 10, but for minimum daily specific humidity (kg/kg * 1000) rather 713 

than maximum. Note that units are 1/10 those for maximum daily specific humidity (Figure 10). 714 
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 715 

Figure 12. Left: Spatial coherence (nondimensional) for daily values of specific humidity in 716 

the original observations. See text for definition of the metric plotted. More negative values (blue) 717 

indicate low spatial coherence; less negative values (brown/red) indicate high spatial coherence. Note 718 

nonlinearity of the color spacing. Middle: Error (%) in the representation of spatial coherence in the 719 

CCSM4 GCM data after bias correction with quantile mapping and downscaling with LOCA. Right: 720 

same as middle, but for EDCDFm bias correction. 721 
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 722 

Figure 13. Point-by-point correlations, by season, between daily maximum temperature 723 

anomalies and specific humidity anomalies, computed using the observations (left column) and 724 

downscaled data (right column).  725 
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 726 

Figure 14. Same as Figure 13, but for daily minimum temperature anomalies correlated with 727 

specific humidity anomalies. 728 
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 729 

Figure 15. Comparison of the observed and downscaled heat index. The observed heat index is 730 

calculated two ways: using relative humidity (first and third rows), or specific humidity ignoring 731 

atmospheric pressure variations (second and fourth rows). The LOCA downscaled version is always 732 

calculated with the latter method. Observed values are the average number of days per year that either 733 

the 27°C (top 2 rows) or 35°C (bottom two rows) heat index thresholds are exceeded. LOCA errors 734 

are shown in days/year (middle column) and as a percentage (right column).  735 


