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Abstract 11 

The relationship between low cloud in the in the greater Los Angeles region (Southern California 12 

Edison service area) and discrepancies from the electrical demand expected for each day based solely on 13 

observed temperatures is examined using historical meteorological station temperature observations, 14 

GOES satellite cloud albedos, and daily peak electrical demand as recorded by the California 15 

Independent System Operator (CalISO). Electrical demand from the Western Electricity Coordinating 16 

Council (WECC) was obtained as well, but not used due to errors in the recorded times in the data set 17 

and disagreement between CalISO and WECC in reported loads for 2005. The historical meteorological 18 

data exhibit problems as well, including blocks of time when uncorrected shifts in the time of 19 

observation cause daily maximum temperatures to be mis-registered, as indicated by disagreements 20 

with nearby stations reporting hourly observations.  A daily peak electrical demand model was formed 21 

by a regression between daily minimum and maximum temperature, weekend/holiday status, and 22 

observed electrical load. Observed departures from the load calculated by this model were analyzed to 23 

determine their relationship to cloud cover. Days with more electrical demand than anticipated (based 24 

upon the temperature) were associated with a weak or absent marine layer, while days with less 25 

electrical demand showed a stronger than usual cloud cover in the region. The relationship between 26 
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cloud cover and load discrepancies could be further explored with more spatially complete temperature 27 

measurements, which might uncover whether the discrepancies are due to lack of temperature 28 

measurements in the critical region at the mean inland edge of the marine layer, or to additional solar 29 

heating of structures. 30 

1. Introduction 31 

The electrical demand for a day is strongly influenced by the day’s peak temperature, especially 32 

in relatively warm regions where annual electrical load is dominated by summer air conditioning, such 33 

as California. Temperatures from the two previous days also have some effect (Garcia-Cerrutti et al. 34 

2011). Beyond temperature, other meteorological conditions may affect energy demand as well, such as 35 

humidity, wind speed, and solar insolation (e.g., Robinson 1997; Mirasgedis et al. 2006). However non-36 

temperature meteorological factors are small by comparison to temperature, and may be hard to 37 

uncover given the pronounced serial auto-correlation in meteorological time series (Mirasgedis et al. 38 

2006). 39 

Although energy utilities consider their demand forecast methods proprietary and so are not 40 

generally available for study, the California Energy Commission (CEC) evaluates energy demand using a 41 

weighted average of the current day and two previous days’ temperature, along with information on the 42 

day of the week (weekends generally have lower electricity demand for a given temperature) and civic 43 

holidays (Garcia-Cerrutti et al. 2011). We adopt this methodology to estimate electrical demand in the 44 

greater Los Angeles region (specifically, the Southern California Edison service area) during the summer 45 

of 2010 on the basis of temperatures observed on that day, and compare estimated to actual peak 46 

electrical demand recorded on that day. Using observed temperatures in our electrical demand estimate 47 

excludes as a source of load forecast errors any errors in forecasting daily minimum/maximum 48 

temperature, which are not of interest here, although of course they are an operational concern. Our 49 
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purpose is to examine discrepancies between the actual electrical demand and that anticipated on the 50 

basis of temperature, day-of-week, and holiday status, and determine if those discrepancies are 51 

associated with varying cloud cover in the region. In other words, we construct a surrogate electrical 52 

demand “hindcast” (similar to a forecast, but based on historical observations) using daily temperature 53 

and then investigate the errors in the hindcast to determine if there are systematic influences by other 54 

meteorological factors, such as cloud cover, which explain why the anticipated demand was not 55 

realized. 56 

This study brings together meteorological data with electrical load data to investigate how they 57 

are related. Section 2 outlines the sources of our data.  We found notable problems with the data from 58 

both sources that make this analysis challenging. Results from the data analysis are shown in section 3 59 

and discussed in section 4. Summary comments along with suggestions for future work are given in 60 

section 5. 61 

2. Data 62 

2.1 Meteorological data 63 

2.1.1 Station temperature data 64 

The California Energy Commission (CEC) bases the utility-wide average temperature used for 65 

forecasting electrical demand on a limited number of stations that have a high quality, long term record. 66 

The station locations are shown in Figure 1, and the weighting applied to each station when computing 67 

the average temperature for the Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San 68 

Diego Gas & Electric (SDG&E) utilities are shown in Table 1. 69 

Station temperature data was obtained from the Global Surface Summary of Day (GSOD, version 70 

7; ftp://ftp.ncdc.noaa.gov/pub/data/gsod/) archive, and includes daily minimum (Tmin) and maximum 71 
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(Tmax) temperature. For two stations (KSEE and KNKX) with substantially incomplete records in GSOD 72 

this was augmented with data from the daily Global Historical Climatology Network (GHCN; 73 

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/). Data gaps in individual station records were filled 74 

by linear regressions based upon historical relationships with the nearest stations with valid data. After 75 

this procedure the utility-averaged, weighted Tmax time series was typically left with ~20 unfilled gaps 76 

over the data period with an average length of ~1.5 days (0.04% of the data).  77 

One problem with the station temperature observations is that some stations report a daily 78 

reading (as opposed to hourly), and the time of observation has shifted over the years at some stations. 79 

At one time many stations that report once-daily temperature took the observation in the late 80 

afternoon. In this event, the day’s maximum temperature is likely to be reported for the day of 81 

observation. More modern practice is to take a single observation in the morning. This means that the 82 

maximum temperature reported belongs to the previous day.  83 

Although some meteorological station records are supposed to be corrected for this effect, 84 

evidence often suggests otherwise. This can be determined using reference meteorological stations that 85 

report hourly data, in which case there is no ambiguity about the day that the measurement applies to. 86 

For example, Figure 2 shows the lag (in days) between annual time series of daily Tmax at KBUR (the 87 

Burbank airport) from the GSOD once-daily data set, and daily Tmax derived from 4 nearby hourly-88 

reporting reference stations (shown in the 4 panels). In all 4 hourly reference stations a clear pattern 89 

emerges that the hourly and GSOD data agree on the reported day between 1975 and 1992, and again 90 

after 2005 (i.e., the correlation between the two time series peaks at a lag of 0 days), but disagree 91 

between 1993 and 2002. During the latter period there is a one-day lag between the two time series, 92 

which suggests that during this period the GSOD data set may be using a morning reporting time 93 

without being corrected. In this work, which is meant to be exploratory and not comprehensive, we only 94 

use data from 2010, and checked that the lagged correlations suggest that the reported times are 95 
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correct in the stations we use, but an incorrectly reported day in the temperature data could be a 96 

significant issue during some time periods. 97 

The size of the red dots in Figure 2 are proportional to the correlation value (in the one-year 98 

window) between the GSOD Tmax time series and the Tmax time series derived from the hourly 99 

reference station. The top left panel is particularly interesting because it shows the GSOD and hourly 100 

data for the same station, KBUR. Correlation values are not uniformly close to 1.0, as might be expected. 101 

To see whether this is a quirk of KBUR or a more general problem, Figure 3 shows time series of hourly 102 

temperature (red line) and daily Tmax (horizontal blue lines) for KSAN (San Diego Lindbergh Field) for 103 

the period 7 April 2006 to 20 April 2006. Although many days show the same maximum temperature in 104 

the two records, there are also some sizable differences. On 14 April 2006, the hourly temperature 105 

readings never exceeded 18°C, while the daily maximum temperature reported for this day in the GSOD 106 

data set exceeds 31°C, a difference of 13°C.  107 

Lacking complete metadata on the instruments we can only speculate why such a discrepancy 108 

might occur. An instrumental problem is always possible. On the other hand, the sudden drop in daily 109 

maximum temperature from April 13 to 14 suggests that a strong marine layer may have formed on the 110 

14
th

, which is not unusual at this location. Such marine layers can have sharp transitions between clear 111 

and cloudy conditions, so perhaps the discrepancy reflects a different location for a daily maximum 112 

recording thermometer and an hourly reading temperature instrument. Or, perhaps a maximum 113 

recording thermometer is used for the GSOD data and it was not reset correctly, and so is reporting the 114 

previous day’s late afternoon high temperature as the value for the 14
th

. The one thing we can say with 115 

certainty is that the various temperature records are not self-consistent, even for a single reported 116 

location.  117 

2.1.2 Cloud data 118 
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Cloud data in the form of albedo estimated using the visible wavelength sensor on the GOES 119 

satellite (http://www.goes.noaa.gov/) was provided by S. Iacobellis of the Scripps Institution of 120 

Oceanography (Iacobellis and Cayan 2013).  The data were processed as documented at 121 

http://www.star.nesdis.noaa.gov/smcd/spb/fwu/homepage/GOES_Imager.php, including corrections 122 

for degradation of the sensor (post-launch calibration), and has been interpolated to a fixed 1 km grid (S. 123 

Iacobellis, pers. comm.). Data for the period we analyze here (summer 2010) was obtained by GOES11.  124 

2.2 Electrical load data 125 

Electrical load data were obtained from two sources: 1) Hourly load data from the Western 126 

Electricity Coordinating Council (WECC) as archived by the California Energy Commission over the period 127 

2005-2010 (described in detail in section 2.2.2). These data are not publically available. 2) Hourly load 128 

data from the California Independent System Operator (CalISO), which operates California’s electrical 129 

power grid, via its Oasis web site, both the newer (http://oasis.caiso.com) and older 130 

(http://oasishis.caiso.com/) versions (section 2.2.3). These data are freely available. 131 

2.2.1 Hour beginning versus hour ending load data 132 

The electrical load data are reported using one of two different time standards: hour beginning 133 

or hour ending. The meaning of these two standards was determined by comparing reported hour 134 

beginning and hour ending values to the CalISO’s real-time updating load graph 135 

(http://www.caiso.com/Pages/Today's-Outlook-Details.aspx), which was assumed to provide a correct 136 

reference load versus time relationship. Based on this comparison, hour beginning values are (as the 137 

name suggests) the instantaneous demand values at the start of the hour. So, for example, a reported 138 

electrical demand value for “hour beginning 07” shows the instantaneous electrical demand that 139 

occurred at 7:00 AM. 140 
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A similar comparison shows that “hour ending” values are arithmetic means over the hour 141 

previous to the reported time. So, for example, a value for “hour ending 9” is approximately the average 142 

from 8:01 AM to 9:00 AM, i.e., centered at a time of 8:30 AM. The comparison of recorded values to the 143 

real-time load graph is not sensitive enough to determine if the exact time averaging interval is 8:00 AM 144 

to 8:59 AM, 8:01 AM to 9:00 AM, 8:00 AM to 9:00 AM, or something else. However, for our purposes, 145 

this one-minute uncertainty is not relevant, since the meteorological observations are only available 146 

with a resolution of 1 hour or longer in any event. 147 

Since hour starting data is instantaneous at the start of the indicated hour but hour ending data 148 

is the average over the previous hour, time series of the same actual loads but reported in the two 149 

different ways will be shifted by half an hour, with the hour ending data lagging the hour starting data. 150 

E.g., an 8 AM reported value is centered at 8 AM in the hour starting data but 7:30 AM in the hour 151 

ending data. 152 

2.2.2 WECC load data 153 

The WECC data is available with hourly time resolution over the period 2005-2010. Values are 154 

spatially aggregated by electrical utility.  155 

In California during the summer, electrical load peaks in the late afternoon due to air 156 

conditioning and is smallest in the early morning hours (~4 AM). The mean daily cycle found in the WECC 157 

data in July for each available year (2005-2010) is shown in Figure 4 for the Los Angeles Department of 158 

Water and Power (LADWP). To facilitate comparing different years the data have been normalized so 159 

that the difference between the minimum and maximum value is 1.0, which reduces discrepancies 160 

between the cycles that arise from changes in population and economic activity over the period. (In 161 

particular, the recession of 2008 had a notable effect on electrical demand.)  162 

For convenience the horizontal grey line and annotations in Figure 4 show the local time of day 163 

at which the average July electrical demand reached 63% of maximum. It is immediately evident that 164 
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the reported times in the WECC data set cannot be taken at face value, since it is implausible that 165 

electrical demand as a function of time of day would shift in nearly exact half- or full-hour increments 166 

between different years, as can be seen by the time when each year’s curve reaches 63% of maximum 167 

(annotated on the figure). More likely is that different standards of reporting have been used in 168 

different years, resulting in a varying (and undocumented) time standard used for each year. Some of 169 

the factors that could explain this varying time standard include: 1) Switching between hour starting and 170 

hour ending reporting, which, as noted above, causes a half hour shift in the time of reported data; 2) 171 

Switching between reporting times that include daylight savings time and times ignoring daylight 172 

savings, which would cause a 1 hour shift in the time of the reported data; 3) Switching between 173 

reporting times based on time at WECC headquarters (located in Salt Lake City UT, which is in the 174 

mountain time zone) and time at the local utility (the Pacific time zone, for LADWP data). This would 175 

also cause a 1 hour shift in the time of the reported data. 176 

Figure 4 suggests that 2010 was reported with a different hour starting/ending standard than 177 

the other years, since otherwise there is no plausible way to generate a half-hour shift in the data. Data 178 

for year 2005/06 has a one-hour shift relative to data for years 2007-9, which suggests that one of the 179 

one-hour shifts noted above are at play, i.e., a change between reporting times that include or exclude 180 

daylight savings time, or a change between reporting times on the basis of time at the WECC 181 

headquarters versus time at the local utility. Given the absence of metadata recording the process by 182 

which the times of the electrical loads were recorded this cannot be determined with certainty, 183 

however the large, integer multiple of 30-minutes shifts between groups of consecutive years (2005/6, 184 

2007/8/9, and 2010) that themselves have relatively minor variation between them is a clear sign that 185 

these problems exist in the reported times. Errors in reported time on sub-year timescales were not 186 

examined. 187 

2.2.3 CalISO OASIS load data 188 
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The OASIS data is available from before 2002 to present time, with near-real time updating. In 189 

this work we do not examine data prior to 2002 since the so-called California electricity crisis affected 190 

loads in 2000 and 2001 (e.g., Sweeney 2002). 191 

The daily cycle of electrical demand in July over the period 2005-2010 is shown in Figure 5 for 192 

Southern California Edison (SCE). As indicated in Figure 1 and Table 1, SCE demand is dominated by 193 

temperatures in the greater Los Angeles region (represented by stations in Riverside, Long Beach, and 194 

Burbank). The actual service area of SCE covers a large part of both southern and central California, 195 

which is why Fresno temperatures contribute to SCE electrical demand (Table 1), but the weighting is 196 

only 6%. Accordingly, Figure 5 (SCE) can be compared to Figure 4 (LADWP), at least in a qualitative way.  197 

It is clear from Figure 5 that the OASIS data does not suffer from the time reporting problems 198 

seen in the WECC data. In addition, the OASIS data is specifically indicated as being reported on an hour 199 

ending basis, and that is consistent with the fact that OASIS-reported SCE load reaches 63% of peak load 200 

at 10:30 AM (i.e., on the half hour; Figure 5).  201 

2.2.4 Comparing WECC and OASIS data 202 

Comparing Figure 5 to Figure 4, we speculate that WECC year 2010 was reported on an hour 203 

ending basis but neglecting daylight savings time (10:30 PDT is 9:30 PST), which would account for a 1-204 

hour shift earlier in the WECC data, while 2005/6 were reported on an hour beginning basis, which 205 

would account for a half-hour shift later in the WECC data. Similarly, 2007/8/9 may have been reported 206 

on an hour beginning basis with respect to the WECC headquarters time zone (since the reported times 207 

appear to be 1.5 hours later than found in OASIS). 208 

The problems with the changing time standard in the WECC data can be avoided if the daily 209 

maximum load is examined, since that is the same no matter what time standard is used. Since we have 210 

data for both WECC and OASIS, we can compare their daily maximum loads to see if they agree. Results 211 

are shown in Figure 6, presented as both time series (upper panel) and scatterplots (lower panel). 212 
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Although there are a few random days when the peak loads disagree (generally with WECC reporting 213 

higher loads than OASIS), by and large the WECC and OASIS peak loads are consistent in years 2006-214 

2010 (nearly all the green circles fall on the black one-to-one regression line). However in year 2005 the 215 

two data sets notably disagree, as can be seen both in the time series and in the regression, with the 216 

WECC data reporting uniformly lower daily peak loads than OASIS (brown circles in lower panel). The 217 

fact that the WECC values are much lower than other years in 2005 than 2006, while the OASIS data is 218 

about the same in 2005 and 2006 as other years, suggests that it is the WECC data that has the error, 219 

barring a reasonable explanation for why electrical demand should have been anomalously low in 2005. 220 

The differing slopes of the green and brown lines in the lower panel of Figure 6 suggest that the error is 221 

proportional to the total load, i.e., as if there is a missing load in the WECC data that is responding to the 222 

same environmental/meteorological conditions as the rest of the electrical system, rather than being a 223 

fixed constant load error. 224 

Because of these errors in the WECC data, we used the CalISO OASIS load data in this work. 225 

3. Results 226 

3.1 Load-temperature relationships 227 

Our purpose is to examine discrepancies between the actual electrical load on summer days and 228 

the anticipated load based on temperature alone, so we must first develop a credible model for demand 229 

as a function of temperature. We do this using regressions, as will now be described. 230 

The relationship between utility region-averaged Tmax (using the stations and weights in Table 231 

1) and electrical demand is shown in Figure 7 for PG&E, SCE, and SDG&E. Different years are indicated 232 

by colors. Red shows results from 2002, the first year in the data set, which has the highest cool-233 

temperature energy use of any of the years in PG&E. In the other utilities 2002 is one of the lowest 234 

consuming years at the cooler temperatures, as might be expected given the general increase in 235 



11 

 

population and economic activity over the time period (notwithstanding the recession of 2008/9). The 236 

reason for this discrepancy in the 2002 PG&E data is unknown. 237 

In all the utilities electrical demand is minimized when daily maximum temperature is just under 238 

70°F. Additionally, the increase in electrical demand with temperature is approximately linear for warm 239 

daily temperatures, which we take advantage of by exploring regressions between electrical demand 240 

and Tmax only during a three-month summer period (15 June to 15 September, taken to be consistent 241 

with Garcia-Cerrutti et al. 2011). Since it is anticipating the year’s highest peak electrical demands that is 242 

of primary interest for avoiding the potential of brownouts or rolling blackouts, it is sensible to restrict 243 

our attention to load forecast errors found in the summer. 244 

The results of the regression model predicting observed load from temperature are shown in 245 

Figure 8. A generalized least squares fitting routine was used, with a method based on maximizing the 246 

restricted log-likelihood. Additionally, because of the strong serial autocorrelation in meteorological 247 

data, a first-order autoregressive (AR1) model was used to describe the correlation structure of the data 248 

being fitted. The estimated AR1 parameter is 0.44, 0.50, and 0.55 for PG&E, SCE, and SG&E, respectively, 249 

values that are large enough to justify taking the serial autocorrelation into account in the regression. 250 

The regression uses current day’s Tmax rather than a weighted combination of the current and previous 251 

two days since a test with the latter formulation did not return a superior fit (as measured by fraction of 252 

variance explained) even though it is more complicated. Additionally, Tmin is included along with a flag 253 

indicating whether or not the day is a weekend or civic holiday.  254 

Because of curvature in the load vs. temperature relationship for SDG&E even in summer (unlike 255 

the other two utilities), the CEC perform the fit for three temperature bands for SDG&E (Garcia-Cerrutti 256 

et al. 2011). Here we try to reduce the number of parameters somewhat by fitting SDG&E using both 257 

Tmax and Tmax2, unlike the other two utilities. This increases the fraction of variance explained from 258 

0.92 to 0.95, but the strong correlation between the Tmax and Tmax2 (> 0.99) must be kept in mind. 259 
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Values for the regression parameters are given in Table 2 (including a regression for SDG&E that does 260 

not include Tmax
2
, for comparison). Explained variance is lowest for PG&E, and highest for SCE, the 261 

utility we examine in more detail below. 262 

Although the previous load-temperature regression was done for daily peak load, the 263 

regressions can be computed using hourly load as well (i.e., daily Tmin and Tmax related to each hour’s 264 

electrical load). This addresses the question of how well each hour’s load can be forecast given 265 

meteorological predictions of daily Tmin and Tmax. The fraction of explained variance in daily load for 266 

the summer of 2010 in SCE as a function of hour-of-day is shown in Figure 9. Daily temperatures are 267 

most predictive of loads in the afternoon hours, peaking at 2 PM. So even though Tmin is more 268 

statistically significant and explains a proportionally greater share of the variance than Tmax in the 5 AM 269 

regression (the reverse of the situation in the late afternoon), the Tmin-dominated early morning 270 

regression still does not forecast early morning electrical demand as well as Tmax forecasts afternoon 271 

electrical demand. 272 

3.2 Clouds and load forecast errors in Southern California Edison 273 

Using the regression described in Table 2 to provide an estimate of daily electrical load based on 274 

utility-averaged Tmax in SCE, and actual observed loads from OASIS, Figure 10 shows the difference 275 

(actual – predicted load) in SCE during the summer of 2010. The RMS error is ~550 MW. The brown 276 

areas show where actual demand exceeded that anticipated based upon temperature, which is 277 

potentially a difficult situation for the electrical system to handle, and can in extreme cases lead to 278 

brownouts or rolling blackouts if the unanticipated demand is high enough and regionally widespread. 279 

Green areas show where actual demand was less than anticipated. The time series of errors does not 280 

appear to be white noise, instead exhibiting a modest degree of serial auto-correlation (the actual value 281 

is 0.37), which is consistent with a meteorological influence on the load forecast discrepancies. 282 
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We examine the relationship between load forecast discrepancies and cloud cover by calculating 283 

the mean cloud albedo on days when the load forecast discrepancy was in the top tercile (most positive, 284 

i.e., the load higher than anticipated based on temperature), the bottom tercile (load lower than 285 

anticipated), and taking the difference, top tercile minus bottom tercile. The difference in load 286 

discrepancy between the top and bottom terciles is approximately 1180 MW, which represents about 287 

5% of the peak SCE load of 24,000 MW seen over the recorded period (Figure 7). This approach shows if 288 

the cloud albedo is systematically different on days with positive and negative load forecast error. In the 289 

event that cloud albedo (and therefore cloud cover) is unrelated to the load forecast errors, then there 290 

will be no systematic difference in albedo between days with positive and negative load forecast errors. 291 

We also examined specific humidity (Abatzoglou 2012), but found no significant difference linked to load 292 

forecast errors. 293 

Results from the tercile analysis of cloud albedos are shown in Figure 11. Since the strength of 294 

the marine layer (and therefore degree of cloudiness) is a strong function of time-of-day, with a 295 

tendency towards low stratus clouds in the morning that burn off by afternoon, the results are shown at 296 

7 AM, 9 AM, 11 AM, and 1 PM local time. The top row shows the mean cloud albedo across all days in 297 

summer of 2010 (15 June to 15 September) at the indicated local time. There is a strong tendency for 298 

cloud cover to be present along the coastal regions of Los Angeles, Ventura, and Orange counties in the 299 

morning hours. The coastal cloud cover persists until at least 9 AM, but in the mean tends to retreat by 300 

11 AM and is nearly gone by 1 PM.  301 

The second row of Figure 11 shows the difference in cloud albedo (percentage points) between 302 

days with the highest and lowest load forecast discrepancies. There is a clear pattern of about −10 303 

percentage points difference across areas of Los Angeles and Orange counties that are slightly inland 304 

from the coast, extending into the southwestern tip of San Bernardino county, as well as the coastal 305 

areas of Ventura county, that peaks between 9 and 11 AM local time. Since the inland edge of the mean 306 
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cloud cover is very nearly coincident with the center of this negative pattern, we interpret this as a shift 307 

in the cloud cover’s edge either inland or towards the coast. The sense of the difference is that during 308 

the highest load forecast discrepancies (demand higher than anticipated based on temperature), the 309 

albedo is lower (less clouds) than during the days when demand is lower than anticipated, when the 310 

albedo is higher and clouds extend inland further.  311 

The difference in albedo shown in the middle row of Figure 11 is given in percentage points, but 312 

to really understand the significance of the difference it is necessary to compare the differences to the 313 

mean cloud albedo (top row of Figure 11). The bottom row of Figure 11 shows the percentage change in 314 

cloud albedo (with respect to mean climatological conditions over all included days) that is associated 315 

with the difference between the top and bottom terciles of load forecast errors. There is up to a 40% 316 

difference in albedo associated with the load forecast discrepancies. 317 

In sum, these results show that electrical demand tends to be higher than anticipated (based 318 

solely on temperature) on days with a weak or missing marine layer along the coast, and vice versa. A 319 

point worth re-emphasizing is that the anticipated load already takes into account the actual day’s 320 

observed temperature. It is not surprising that a day with no clouds is warmer than a day with clouds, 321 

and that since temperatures are warmer, electrical demand will be higher on days with a weak or 322 

missing marine layer. However the load model already uses the actual observed temperature for the 323 

day, so these results show that even when the higher temperatures experienced on days with no marine 324 

layer are taken into account, there is still a residual error such that lack of a marine layer leads to higher 325 

than anticipated electrical load. 326 

The results of the regression and tercile analysis are worth illustrating with a specific case study. 327 

Figure 12 shows the forecast and actual loads for all days in the summer of 2010 for SCE. The two red 328 

dots show August 17 and 27, which are notable for having almost the exact same Tmax (differing by only 329 

0.02°F) and similar Tmin (differing by ~1.7°F). Both were a weekday and not a holiday, and are separated 330 
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by less than 2 weeks. Despite the similar temperatures and time of year, electrical demand was 331 

substantially higher on the 17
th

 (20,700 MW) than on the 27
th

 (18,900 MW), a difference of about 9.5%. 332 

Based on the regressions developed in section 3.1 the anticipated difference in electrical load (given the 333 

observed temperatures) was only about 0.3 MW (1.7%), so the actual difference was more than five 334 

times larger than forecast. 335 

The cloud albedo fields for these two days are shown Figure 13. There is a considerable 336 

difference between the marine layer in the greater Los Angeles region between the two days, with 17 337 

August (the day with high electrical demand) showing substantially less coastal clouds than 27 August 338 

(the day with low electrical demand). While any particular example using a pair of similar days does not 339 

constitute proof of the relationship suggesting that anomalously high electrical loads in SCE are 340 

associated with  days lacking a marine layer, it is at least consistent. 341 

4. Discussion 342 

The analysis presented here suggests that electrical demand in the greater Los Angeles basin 343 

area is higher than the demand expected based on temperature alone when the marine layer is absent. 344 

What are some possible causes of this? 345 

One possibility is that the limited number of stations used to estimate the utility-wide Tmax 346 

does not fully capture all the important temperature variability that drives demand variations. In the 347 

CEC scheme to forecast SCE electrical demand, which we use here, temperature is calculated from four 348 

stations (Riverside, Long Beach, Burbank, and Fresno), only one of which (Long Beach) is near the coast 349 

(see Table 1 and Figure 1). Our analysis suggests that the load forecast errors are associated with cloud 350 

variability on the inland edge of the marine layer (blue areas in the middle row of Figure 11). It is 351 

possible that additional temperature information taken specifically from that area could improve the 352 
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load demand forecasts. The temperature gradient perpendicular to the coast could be estimated with 353 

better station coverage, and may be useful in the demand forecast model. 354 

Another possibility is that the additional solar insolation on clear days (weak marine layer) 355 

increases the demand above and beyond what would be expected due to the ambient air temperature, 356 

perhaps by more efficiently heating structures through windows. This possibility could be ruled out if 357 

additional temperature measurements from regions underlying the inland edge of the marine layer 358 

showed that temperature alone was enough to anticipate the extra electrical demand, although a more 359 

elaborate analysis would be required to demonstrate a connection of load forecast errors to an increase 360 

in direct solar heating if the explanation based on temperature was not supported by additional data 361 

and analysis. In either event, the most straightforward way to explore this issue further would be to 362 

obtain temperature data from additional locations in the relevant parts of Los Angeles, Ventura, and 363 

Orange counties, and see if a higher-resolution depiction of daily maximum temperature were enough 364 

to account for the errors in the load forecast that we find in this region.  365 

The possible role of early morning satellite observations of low stratus cover could also be 366 

explored, perhaps providing some limited same-day predictability of the marine layer’s effect. The 367 

relationship between duration of the marine layer and the effect on load also has not been explored in 368 

this work, but could have some influence. 369 

5. Summary 370 

We have analyzed meteorological station temperature data, cloud fields from the GOES 371 

satellite, and historical electrical load data to examine the relationship between clouds and electrical 372 

load forecast errors in the greater Los Angeles region. The electrical load anticipated for a day is based 373 

on that day’s observed minimum and maximum temperature and weekend/holiday status. Performing 374 
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such an analysis is considerably hindered by problems with data quality in both the meteorological and 375 

electrical load data. 376 

Comparing two sources of electrical load data, from the Western Electricity Coordinating Council 377 

(WECC) and from the California Independent System Operator (CalISO) OASIS web site, we found 378 

notable inconsistencies and discrepancies between them, particularly in the reported times associated 379 

with the WECC data. Implausible shifts in the daily cycle of energy use seen in different calendar years 380 

that occur at integer multiples of 30 minutes strongly suggest undocumented changes over the years in 381 

the reporting methodology of the times associated with the measured load. Additionally, an overall 382 

discrepancy between loads reported for 2005 in the WECC and OASIS data is evident, with no obvious 383 

explanation except that the WECC data set is missing about ~8% of California’s electrical load in that 384 

year.  385 

The meteorological data also has some distinctive problems. Based on lag correlations with 386 

hourly reporting reference stations , some of the temperature records clearly indicate that changing 387 

observation times in the daily temperature time series have not been adjusted for correctly (or at all). 388 

Additionally the observations occasionally exhibit substantial differences between daily maximum 389 

temperature values recorded in the hourly and daily time series even for the same station, far larger 390 

differences than can be accounted for by the hourly stations having a limited sampling rate. Such 391 

problems might be caused by physically separated instruments being affected differently by the 392 

(sometimes) strong cloud edge associated with the marine layer, but it seems more likely that they 393 

could be due to instrument or procedural errors. More investigation using other station records would 394 

help to better understand these differences.  These problems underscore the importance of monitoring 395 

high quality hourly observations from reference stations that can be used to verify the quality of the 396 

traditional max/min temperature data from the network of stations that are employed.   397 
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Using Southern California Edison (SCE) electrical loads in the summer of 2010 as a test case, we 398 

constructed a regression between observed daily maximum and minimum temperatures in the utility 399 

service area and recorded electrical load (from OASIS) to serve as our “forecast” of electrical demand. 400 

This approach using observed historical temperatures is useful because it removes the contribution of 401 

weather forecast errors to the load forecast error, allowing us to focus on electrical demand variations 402 

that do not arise from unanticipated temperature variations.  403 

We find that differences between actual peak load experienced in a day and that expected 404 

based on the observed temperatures are associated with changes in the inland penetration of the 405 

marine layer. The difference can be up to ~5% of the utility’s peak load, which is smaller than 15% 406 

reserve margin utilities are required to maintain, but still might affect operations or reliability in some 407 

cases.  408 

On days where the marine layer is strong and penetrates farther inland, electrical demand tends 409 

to be lower than would be expected given the day’s actual temperatures. On days with a weak or 410 

missing marine layer, demand tends to be higher than expected based simply on the day’s 411 

temperatures. We speculate that this could be due to the limited number of meteorological stations 412 

used to forecast electrical demand for SCE missing the effects of shifts in the inland edge of the marine 413 

layer, or possibly due to an extra increment of solar insolation that heats the interiors of structures 414 

more during clear days. An expanded analysis that attempted to find and use more meteorological data 415 

in the greater Los Angeles area would be able to discriminate between these two possibilities. 416 

Additionally, early morning satellite observations of the stratus layer might be useable for a limited, 417 

same-day prediction of the layer’s effect on local electrical demand. 418 

 The present analysis was exploratory and is based only upon 2010 data—other years should be 419 

examined to determine to what extent occurs the cloud influence on Load forecast error. Besides the LA 420 

Basin region which was the domain considered in the present analysis, another avenue that could be 421 
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useful would be to explore the PGE and SDGE region to determine if there is a cloud effect there. Also, 422 

the particular meteorological characteristics of yearly peak demand days could be examined differently 423 

from normal days. For example, perhaps yearly peak demand days are associated with breaks in the 424 

marine layer of multiple consecutive days. Finally, this work has considered low stratus effects on 425 

electrical load in the Los Angeles area but not other meteorological influences. For example, there are 426 

periods during which the monsoonal circulation can affect cloud cover and humidity in the region. Such 427 

flows might have different impacts from the cooler air and cloud cover associated with the marine layer, 428 

and would be useful to explore in future work. 429 
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 450 

Abbreviation Name Pacific Gas & 

Electric weight 

Southern California 

Edison weight 

San Diego Gas & 

Electric weight 

KUKI Ukiah Municipal 

Airport 

0.067   

KSFO San Francisco 

International Airport 

0.069   

KSJC San Jose 

International Airport 

0.282   

KSAC Sacramento 

Executive Airport 

0.169   

KFAT Fresno Yosemite 

International Airport 

0.413 0.062  

KRIV March Air Reserve 

Base (Riverside) 

 0.371  

KBUR Bob Hope Airport 

(Burbank) 

 0.243  

KLGB Long Beach Airport  0.324  

KSAN San Diego Lindbergh 

Field 

  0.333 

KNKX Miramar Marine 

Corps Air Station 

  0.333 

KSEE Gillespie Field, El 

Cajon 

  0.333 

 451 

Table 1. Meteorological stations used by the California Energy Commission for forecasting 452 

electrical load for the Pacific Gas & Electric, Southern California Edison, and San Diego Gas and Electric 453 

utilities. 454 
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 455 

Utility Tmax coeff, (std 

err), MW/°F 

Tmax
2
 coeff,  

(std err) , 

MW/°F
2
 

Tmin coeff (std 

err) , MW/°F 

Weekend/holiday 

coeff (std err), MW 

Percent of 

variance 

explained (R
2
) 

PG&E 219.5 (22.4) N/A 71.4 (36.8) -1141.3 (137.7) 85.6 

SCE 209.6 (13.8) N/A 203.3 (24.2) -1860.1 (116.4) 95.4 

SDG&E -274.9 (43.4) 1.992 (0.27) 17.1 (4.7) -206.9 (18.7) 94.5 

SDG&E (no T
2
) 41.5 (3.1) N/A 30.3 (5.3) -219.5 (23.6) 91.9 

 456 

Table 2. Regression parameters for relating daily maximum load (MW) to daily maximum 457 

temperature (°F), minimum temperature (°F), and weekend/holiday status, for the summer of 2010.  458 
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 459 

Figure 1. Meteorological stations used for utility load forecasting. See Table 1 for more 460 

information. KUKI: Ukiah. KSAC: Sacramento. KSFO: San Francisco. KSJC: San Jose. KFAT: Fresno. KBUR: 461 

Burbank. KLGB: Long Beach. KRIV: Riverside. KNKX: Miramar. KSEE: El Cajon. KSAN: San Diego. 462 
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 463 

Figure 2. Red circles show, for calendar years from 1975 to 2010 (vertical axis), the lag (days, on 464 

the horizontal axis) the maximizes the correlation between two time series: a) daily maximum 465 

temperature at KBUR (Burbank airport) derived from global summary of day (GSOD) reports; and b) daily 466 

maximum temperature derived as the highest daily value observed by the indicated hourly-reporting 467 

reference station. Each panel shows a different hourly reference station used for the comparison. Top 468 

left: KBUR (the same station as used in GSOD). Top right: Los Angeles International Airport. Bottom left: 469 

KLGB (Long Beach airport). Bottom right: Lancaster/Fox Field. The inset map shows the location of KBUR 470 

(black diamond) and the reference station being used for the comparison (red “R”). The size of the red 471 

circle is proportional to the correlation between the GSOD and hourly-reporting station’s time series. 472 
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 473 

Figure 3. Time series of hourly (red line) temperature and daily maximum temperature (blue 474 

horizontal lines with the reporting date indicated) from station KSAN (San Diego Lindbergh Field), as 475 

reported in the hourly temperature data set and daily maximum temperature data set, respectively.  476 
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 477 

Figure 4. Normalized mean daily cycle of electrical load in the Los Angeles Department of Water 478 

and Power service region for July 2005-2010 (indicated by different colors) in the WECC data set. Also 479 

shown is the time of day at which the normalized load reaches 63% of the maximum (horizontal grey 480 

line with annotations). 481 
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 482 

Figure 5. Normalized mean daily cycle of electrical load in the Southern California Edison service 483 

region for July 2005-2010 (indicated by different colors) in the CalISO OASIS data set. Also shown is the 484 

time of day at which the normalized load reaches 63% of the maximum (horizontal grey line with 485 

annotation). 486 
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 487 

Figure 6. Upper: time series of CalISO service area daily peak electrical load from WECC (dashed 488 

red line) and OASIS (solid blue line). Lower: Regression between OASIS and WECC daily peak values over 489 

the period 2006-2010 (green circles) and for year 2005 (brown circles). The black line in the lower panel 490 

shows a one-to-one relationship. 491 
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 492 

Figure 7. Relationship between utility-averaged daily maximum temperature (Tmax, horizontal 493 

axis, in degrees F) and peak daily load (vertical axis, megawatts) from CalISO OASIS for every day in the 494 

period 2002-2010 for Pacific Gas & Electric (top), Southern California Edison (middle), and San Diego Gas 495 

& Electric (bottom).  496 
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 497 

Figure 8. Regressions between actual electrical demand for summer (15 June to 15 September) 498 

of 2010 and demand predicted on the basis of Tmax, Tmin, and day-of-week status. 499 
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 500 

Figure 9. Fraction of variance in the electrical demand vs. temperature relationship explained 501 

when electrical demand is taken by the indicated hour (but still using daily Tmin and Tmax), for SCE over 502 

the summer of 2010.  503 
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 504 

Figure 10. Load forecast error, MW (actual daily peak load – peak load predicted based on 505 

temperature and day-of-week) for SCE in the summer (15 June to 15 September) of 2010. 506 
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 507 

Figure 11. Top row: mean albedo (percent) in the greater Los Angeles basin area during the 508 

summer of 2010, from GOES satellite observations, for the indicated local time of day (columns). 509 

Outlines and annotations show county boundaries. Middle row: the difference (percentage points) in 510 

albedo between days in the top and bottom terciles of load forecast errors. Bottom: same as the middle 511 

row, but in percent instead of percentage points. 512 
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 513 

Figure 12. Scatterplot of forecast versus observed load on individual days (dots) in the summer 514 

of 2010 for SCE. Green dots show weekends or holidays; gold dots show weekdays. The two red dots 515 

show the days examined in more detail in the text and Figure 13. 516 
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 517 

Figure 13. Cloud albedo field on August 17, 2010 (left) and August 27, 2010 (right) at 9 AM local 518 

time. 519 


