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Abstract 23 

Global climate model output typically needs to be bias corrected before it can be used for 24 

climate change impact studies. Three existing bias correction methods, and a new one developed 25 

here, are applied to daily maximum temperature and precipitation from 21 global climate models 26 

(GCMs) to investigate how different methods alter the climate change signal of the GCM.  The 27 

quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction 28 

methods can significantly alter the GCM’s mean climate change signal, with differences of up to 29 

2°C and 30 percentage points for monthly mean temperature and precipitation, respectively. 30 

Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily 31 

maximum temperature, but not precipitation. An extension to EDCDFm termed PresRat is 32 

introduced, which generally preserves the GCM changes in mean precipitation. Another problem 33 

is that GCMs can have difficulty simulating variance as a function of frequency. To address this, 34 

a frequency-dependent bias correction method is introduced that is twice as effective as standard 35 

bias correction in reducing errors in the models’ simulation of variance as a function of 36 

frequency, and does so without making any locations worse, unlike standard bias correction. 37 

Lastly, a preconditioning technique is introduced that improves the simulation of the annual 38 

cycle while still allowing the bias correction to take account of an entire season’s values at once. 39 
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1. Introduction 40 

Climate impact assessments can be sensitive to biases in global climate model (GCM) 41 

output (IPCC, 2013). For example, precipitation biases degrade hydrological simulations due to 42 

the non-linear nature of runoff: a moderate amount of precipitation generates little runoff if the 43 

soil can absorb the moisture, while doubling the precipitation generates more than twice the 44 

runoff if the moisture storage capacity of the soil is exceeded. This non-linear relationship 45 

becomes more extreme in arid regions (Wigley and Jones, 1985). Similarly, temperature biases 46 

can influence the partition of precipitation into snow or rain, affecting the snowpack and 47 

therefore the timing and magnitude of runoff over the entire year.  48 

For this reason hydrological simulations generally use bias corrected GCM output. Bias 49 

correction is often an integral part of downscaling GCM output (e.g., Wood et al. 2002; Maurer 50 

et al. 2010). Here however we consider the bias correction step alone. Bias correction is best 51 

applied on a spatial scale near the original GCM’s spatial resolution (Maraun, 2013), so we 52 

examine bias correction on a grid commensurate with the original GCMs. 53 

Many bias correction methods have been used in climate impact studies. One widely used 54 

method is quantile mapping (QM; e.g., Panofsky and Brier 1968; Wood et al. 2002; Thrasher et 55 

al. 2012), which adjusts a model value by mapping quantiles of the model’s distribution onto 56 

quantiles of the observations. QM has been applied to climate model output over both the U.S. 57 

(e.g., Maurer et al. 2007, 2014) and globally (Thrasher et al. 2012).  58 

Previous studies have shown that QM alters the magnitude and even direction of mean 59 

changes projected from the original GCM (Hagemann et al. 2011; Pierce et al. 2013; Maurer and 60 

Pierce 2013). This can engender confusion and inconsistent results, for example between bias 61 
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corrected GCM output for regional climate studies and unadulterated GCM output evaluated by 62 

the IPCC (2007, 2013). If a climate model has too much variability, QM tends to reduce 63 

variability on all timescales, including the trend (Pierce et al. 2013; Maurer and Pierce 2013). If 64 

the GCM has too little variability, QM tends to increase the trend. Since bias correction is a 65 

purely statistical method, it fails to discriminate between the physical processes determining 66 

trends associated with anthropogenic forcing and shorter-term fluctuations associated with 67 

natural internal climate variability. From this perspective there is little justification for allowing 68 

bias correction that primarily addresses problems on synoptic, seasonal and annual timescales to 69 

change the trend as well.  70 

Although the correct long-term future trend in climate variables is unknown, as witnessed 71 

by the IPCC’s adoption of a “one model, one vote” policy for evaluating climate projections, in 72 

this work we choose to implement a bias correction scheme that does not alter the original GCM 73 

trend. This reduces the disparity between global model studies with a given GCM and regional 74 

models based on bias-corrected output from that GCM. Other options for how to interpret the 75 

long-term trend in a GCM that has incorrect short-timescale variability await further research. 76 

Other bias correction methods include the cumulative distribution function transform 77 

(CDF-t) method (Michelangeli et al. 2009), which assumes that the historical mapping between 78 

the model and observed cumulative distribution functions applies to the future period, and 79 

equidistant quantile matching (EDCDFm; Li et al. 2010), which preserves the GCM-predicted 80 

change at each quantile evaluated additively (i.e., as the future minus historical value). However 81 

changes in precipitation are often more usefully evaluated as multiplicative changes, since a 82 

fixed amount of precipitation change has different implications in wet and arid regions.  We 83 

show that EDCDFm alters the GCM-predicted mean precipitation change (evaluated 84 
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multiplicatively), and CDF-t alters both the model-predicted temperature and precipitation 85 

changes. The first goal of this work is to show that a straightforward extension to EDCDFm, 86 

which we term “PresRat” (because it preserves the ratio) can retain the model-predicted future 87 

change in mean precipitation evaluated as a ratio (cf. Wang and Chen, 2014). 88 

GCM biases in temporal variance can also pose problems for impact modeling. For 89 

example, a model might have too much variability on synoptic timescales yet too little on annual 90 

timescales, making it challenging to represent the proper magnitude and spectra of phenomena 91 

such as droughts. Although simulations have improved with the CMIP5 models, deficiencies still 92 

remain in representing regional variability on interannual to decadal timescales (Sheffield et al., 93 

2013). QM, CDF-t, and EDCDFm do not address this problem. Such biases could influence the 94 

simulation of heat waves or flooding events, with consequences for agriculture, ecosystems, 95 

droughts, or reservoir simulations. The second goal of this work is to describe a method that 96 

reduces frequency-dependent climate model biases. 97 

Lastly, bias correction is typically implemented in a time window, often of about a month 98 

long. Choosing an appropriate time window involves compromises between correcting the 99 

annual cycle, reducing discontinuities at the edge of the time window, and evaluating extreme 100 

values over an entire season. The third goal of this work is to show that a simple preconditioning 101 

technique together with iteratively applied bias correction can improve the final corrected 102 

seasonal cycle, while still allowing a seasonal time window and reducing discontinuities at the 103 

window’s edges. 104 

The rest of this work is structured as follows. In section 2 we describe the observed and 105 

model data sources we use to evaluate the bias correction schemes. Section 3 addresses the 106 

problem of bias correction altering model-predicted changes, and proposes an extension to the 107 
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EDCDFm bias correction scheme that preserves model-predicted mean future changes in 108 

precipitation. Section 4 addresses frequency-dependent model biases, documents the extent to 109 

which these are seen in the current generation of global climate models, and proposes a method 110 

for reducing these biases. Section 5 shows how simple preconditioning together with an iterative 111 

bias correction scheme can improve the representation of the annual cycle and reduce bias 112 

measured in different windows. A summary and conclusions are given in section 6. 113 

2. Data sources and time periods 114 

2.1 Global climate models 115 

We use daily maximum temperature and precipitation fields from 21 GCMs that 116 

participated in the Coupled Model Intercomparison Project, version 5 (CMIP5; Taylor et al., 117 

2012), listed in Table 1. The models used are all those available from the U.S. Bureau of 118 

Reclamation (USBR) archive of regridded (1°x1° longitude-latitude) CMIP5 global climate 119 

models at the time this work was performed (ftp://gdo-120 

dcp.ucllnl.org/pub/dcp/archive/cmip5/bcca; Maurer et al. 2014). GCM output was obtained from 121 

both historical (1950-2005) runs and future (2006-2099) runs using representative concentration 122 

pathway 8.5 (RCP8.5).  123 

2.2 Observations 124 

We used observed daily maximum temperature and precipitation data from Maurer et al. 125 

(2002), as updated through 2010 (available from 126 

http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html). The ultimate source 127 

of this gridded product is the NOAA co-operative observer weather stations, with techniques 128 

from the PRISM project (Daly et al. 1994) used to adjust observed precipitation values to match 129 
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long-term PRISM climatology. The data come on a 1/8° x 1/8° latitude-longitude grid, which we 130 

aggregated to the same 1°x1° grid as the GCM output. 131 

2.3 Time periods 132 

The World Meteorological Organization (WMO) recommends that climatological 133 

normals be calculated over 30-year periods (Trewin 2007). We follow this guidance by bias 134 

correcting GCM values to a 30-yr climatological record of observations, and furthermore by bias 135 

correcting contiguous 30-yr segments of climate simulations individually. A different segment 136 

length could be used, subject to two opposing considerations: 1) The segments should be long 137 

enough to provide a reasonable estimate of the climatological normals, given natural internal 138 

climate variability; 2) The segments should be short enough that the statistical characteristics of 139 

the variable being downscaled are reasonably stationary over the period being downscaled. We 140 

used 30 years as a compromise for these two criteria. 141 

For the future model projections we bias correct the periods 2010-2039, 2040-2069, and 142 

2070-2099 separately. In the results shown below we focus on 2070-2099 as our “future” period. 143 

The climatological (historical) period is the last 30 years of the GCMs’ historical runs (1976-144 

2005), used for both the models and observations. We bias correct and evaluate the models over 145 

the same historical period (1976-2005) so that difference between the bias corrected results and 146 

observations is known to be due to the bias correction itself, rather than due to differences in 147 

climate between the historical period and an independent verification period (cf. Teutschbein and 148 

Seibert, 2012). This differs from, for example, downscaling, where an independent period is 149 

typically used to evaluate the downscaled results. 150 
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3. Preserving model-predicted mean changes 151 

We evaluate temperature changes as a difference (future minus historical) and 152 

precipitation changes as a ratio (future / historical). This is unlike Maurer and Pierce (2013), 153 

which evaluated precipitation changes as a difference. However, evaluating precipitation changes 154 

as a ratio can be useful since a fixed amount of precipitation change has different implications in 155 

an arid region than in a wet region. 156 

The present work explores three approaches to bias correction: preserving the mean 157 

model-predicted change, reducing frequency-dependent biases, and preconditioning and reducing 158 

biases in different time windows. If all approaches were implemented simultaneously it would be 159 

difficult to distinguish the influence of each procedure on the resultant change. In this section we 160 

use standard monthly bias correction (all January values are bias corrected together, etc.) 161 

excluding frequency-dependent bias correction or preconditioning. 162 

3.1 Effect of QM, CDF-t, and EDCDFm on model-predicted changes 163 

3.1.1 Quantile Mapping 164 

Quantile mapping (QM; Panofsky and Briar, 1968; Wood et al. 2002) bias corrects a 165 

model value by changing it to the observed value at the quantile that the model value falls in the 166 

model’s historical distribution. The process is illustrated schematically in Figure 1a, using CDFs 167 

of synthetic gamma distributions to mimic precipitation.  168 

Averaged across the 21 GCMs, QM exaggerates monthly mean model-projected warming 169 

(2070-2099 minus 1976-2005) in the Rockies in January and diminishes it in July (Figure 2a). 170 

Maurer and Pierce (2013) showed why QM alters the GCM trend when model variance is biased; 171 

briefly, if the model’s variance is incorrect, QM alters the trend as it corrects the variance. Figure 172 

2a shows multi-model mean values, but the modification in any individual model can be much 173 
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greater. The RMS spread across the 21 models is shown in Figure 2b. The spread is appreciable 174 

using the QM technique, with RMS values of up to 2 °C, and more spread is found in the warmer 175 

months. 176 

Figure 3 shows a similar analysis for precipitation, evaluated multiplicatively in terms of 177 

percentage change. QM tends to make the original model-predicted mean change wetter over the 178 

Northwestern U.S. in January and California in July. The RMS spread across models is ~25 179 

percentage points in parts of the Northwest in January, and exceeds 60 percentage points in the 180 

dry California/Great Basin region in July.  181 

3.1.2 CDF-t 182 

CDF-t bias correction (Michelangeli et al. 2009) finds a transformation that maps the 183 

GCM cumulative distribution function (CDF) of a climate variable in the historical period to the 184 

observed CDF, then applies that same mapping to the GCM’s future CDF. The process is 185 

illustrated schematically in Figure 1c. When bias correcting a historical run CDF-t reduces to 186 

QM, although the treatment of values off the end of the distribution (discussed below) comes 187 

into play. 188 

The second columns of Figure 2 and Figure 3 show that CDF-t modifies the original 189 

monthly mean temperature projection less than QM, but still on the order of 0.5 °C. CDF-t tends 190 

to make the precipitation projections drier, which can be understood in terms of Figure 1c. To 191 

produce a point on the bias corrected future distribution (dotted green line) it is necessary that the 192 

model historical value at the quantile being bias corrected fall within the range of observed 193 

values, as indicated by vector (2) in Figure 1c. As vector (2) progressively moves to the right in 194 

Figure 1c, at higher quantiles it becomes impossible to map future changes beyond the maximum 195 

observed value.  In this event, following Michelangeli et al. (2009), the correction used is that 196 
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found at the maximum valid historical value. However in climate projections the precipitation 197 

distribution changes shape such that the most extreme events increase preferentially (e.g., IPCC 198 

2007, 2013). In this situation CDF-t uses a correction that falls at a lower quantile and so misses 199 

the preferential increase in the highest quantiles.  200 

3.1.3 EDCDFm 201 

EDCDFm (Li et al. 2010) bias corrects a future value x that falls at quantile u in the 202 

future distribution by adding the historical value at u to the model predicted change in value at u. 203 

The process is illustrated schematically in Figure 1b (note the non-linear X axis when 204 

considering the length of the ∆ vector). When bias correcting a model historical run, EDCDFm 205 

reduces to QM.  206 

EDCDFm preserves the GCM-predicted median change evaluated additively, but not 207 

necessarily the mean change since the quantile at which the mean falls can change in the future. 208 

However, for daily maximum temperature, GCM-predicted changes are generally a weak 209 

function of quantile in the neighborhood of the mean value, so EDCDFm preserves the model-210 

predicted change in mean temperature to within a few hundredths of a degree C (third column of 211 

Figure 2).  212 

As expected, EDCDFm does not preserve GCM-predicted fractional changes, i.e., (future 213 

model value − historical model value)/(historical model value). At every quantile EDCDFm 214 

preserves the numerator of this ratio, but in the process of bias correction substitutes the 215 

observed value for the historical model value in the denominator, changing the ratio. This is 216 

illustrated in the third column of Figure 3. EDCDFm alters the original model-predicted mean 217 

precipitation change by more than 30 percentage points in the dry (rain shadow) parts of the 218 
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Northwest U.S. This will happen particularly when there are both large biases and large changes 219 

in the upper quantiles of a skewed precipitation distribution. 220 

3.2 Bias correction that preserves model-predicted mean changes 221 

Given the same GCM input, QM, EDCDFm, and CDF-t produce different future 222 

temperature and precipitation fields, and it is not obvious which one is correct. QM assumes that 223 

the historical model error in value at a given value is preserved in the future (arrow (2) in Figure 224 

1a), EDCDFm assumes that the historical model error in value at a given quantile is preserved in 225 

the future (∆ in Figure 1c), and CDF-t assumes that the historical model error in quantile at a 226 

given quantile is preserved in the future (arrow (2) in Figure 1b). (The “missing” version of this 227 

quartet of bias correction methods, which would assume that the historical model error in 228 

quantile at a given value is preserved in the future, could also be constructed.) 229 

Here we explore an alternative assumption: that the GCM-predicted mean change is 230 

preserved in the bias corrected future projections. EDCDFm already preserves model-predicted 231 

mean change in temperature (evaluated additively) for all practical purposes, so we adopt it for 232 

temperature. However an amended form is required for precipitation since we evaluate its 233 

changes multiplicatively. If the predicted GCM value x falls at quantile u, then the bias corrected 234 

precipitation value is the historical value at u multiplied by the model-predicted change at u 235 

evaluated as a ratio (i.e., model future precipitation / model historical precipitation). This 236 

preserves the model-predicted median (not mean) change evaluated multiplicatively. In fact, Li 237 

et al. (2010) do this for a small number (~0.3%) of grid points that otherwise are “problematic” 238 

when bias correcting precipitation additively, although they did not explore the implications of 239 

preserving a model-predicted mean future precipitation change. Also, Wang and Chen (2014) 240 

adopt this ratio-based approach for bias correcting precipitation, although their stated reason is to 241 
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avoid the negative precipitation values that might arise when using additive factors. This scheme 242 

cannot be applied at quantiles with no precipitation, in which case we set the model-predicted 243 

change ratio to 1.  244 

Applying EDCDFm with model-predicted change ratios is only part of the solution to 245 

preserving the original model-predicted mean change, because the quantile at which the mean 246 

falls can change between the historical and future period if the shape of the distribution changes. 247 

Although this results in negligible errors in temperature, precipitation distributions are more 248 

skewed and GCMs can show significantly varying projections of future change as a function of 249 

quantile. However, the mean precipitation change can be preserved exactly if the bias corrected 250 

value is multiplied by a correction factor � = 〈�〉/〈��〉, where x is the change (expressed as a 251 

ratio) in mean precipitation from the GCM, �� is the change in mean precipitation following bias 252 

correction, and brackets indicate that the mean is taken over all days in the temporal window 253 

(monthly here).  254 

The treatment of zero-precipitation days is an important consideration for regional 255 

climate change (Polade et al. 2014). At each grid cell we calculate a location-specific zero-256 

precipitation threshold, τ , such that applying τ  makes the model’s number of zero-precipitation 257 

days match observations over the historical period. We require τ  >= 0.01 mm/day to avoid the 258 

possibility of very small denominators in the model-predicted change ratio. Current GCMs tend 259 

to precipitate too frequently, often at daily amounts above 0.01 mm, so this limit is rarely 260 

invoked. The GCM-predicted future fraction of zero-precipitation days, Zgf , is calculated using τ 261 

with the GCM’s original (non-bias corrected) future time series. The model data is then bias 262 

corrected, and the smallest Zgf  fraction of precipitation values are set to zero. This preserves the 263 

model-predicted change in fraction of non-precipitating days, even if it increases. However if the 264 
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model has a strong dry bias, so that it has many more zero-precipitation days than observed, the 265 

model predicted change in zero precipitation days may not be preserved since there is no way to 266 

know which of the extra zero-precipitation days should be set to a positive value. 267 

We call the combination of using the model-predicted change ratio, the treatment of zero 268 

precipitation days outlined above, and the final correction factor, the PresRat bias-correction 269 

method because it preserves the mean GCM-predicted future mean precipitation change 270 

evaluated as a ratio. Figure 1d includes results from PresRat applied to the synthetic example 271 

data (purple line). 272 

Corrections that PresRat requires to maintain the model-predicted mean precipitation 273 

change are second order, arising from changes in the percentile at which the mean falls combined 274 

with differing model-predicted changes at different percentiles, and so tend to be modest. Figure 275 

4 shows K for four different months averaged across all 21 GCMs. In any given month using the 276 

model change ratio alone tends to alter the model-predicted mean change by less than 5% in 277 

most of the region. In some places though, especially California in the summer, PresRat requires 278 

substantial corrections to preserve the model-predicted mean change.  279 

By construction, PresRat preserves the model-projected mean precipitation change almost 280 

exactly (rightmost column of Figure 3). Discrepancies only arise due to problems with the 281 

model’s number of zero-precipitation days, as noted above. 282 

In summary, both temperature and precipitation can be bias corrected using methods that 283 

preserve GCM-predicted future mean changes. Doing so helps minimize confusion and 284 

inconsistent results between downscaled regional climate simulations and global model analyses, 285 

such as in the IPCC reports (2007, 2013). This also means that model-predicted mean changes 286 
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can be subsequently downscaled if desired (cf. Wood et al. 2002, who remove the mean GCM 287 

change before downscaling and then add it back afterwards). 288 

4. Frequency Dependent Bias Correction 289 

4.1 Overview 290 

The effect of bias correction on model-predicted trends is a special case of the effect of 291 

bias correction on variability evaluated at long (multidecadal) timescales. We now address the 292 

more general question of model biases at different timescales and how to reduce them.  293 

Details of our spectral approach are given in Appendix A. In brief, the model variance is 294 

compared to observations in 100 logarithmically spaced frequency bins. A digital filter is then 295 

applied in frequency space to make the model spectrum better match observations. One caveat is 296 

that we do not consider frequency-dependent biases in different seasons or months, only as a 297 

whole over the entire time period. This potentially means that it is not feasible to expect a 298 

removal of biases across all timescales of interest by this technique (e.g., bias correcting 2-10 299 

day timescale temperature biases in winter and summer separately). 300 

Since we bias correct in 30-yr periods (section 2.3), the PresRat method will preserve 301 

model-predicted mean changes at periods of 30 years and longer in the future projection. 302 

Accordingly we consider, at most, periods from two days (the Nyquist frequency given daily 303 

model output) to 30 years. This interval is further refined to two days to 11 years in light of our 304 

spectral analysis technique (Appendix A). 305 

4.2 Frequency dependent model errors 306 

Figure 5 shows the observed (1976-2005) distribution of variance in daily maximum 307 

temperature across frequencies (labeled using equivalent periods; left column), and the multi-308 
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model mean errors in representing this distribution (middle column). The right column shows 309 

multi-model RMSE (i.e., at each point, the spread of values across the 21 models). The 310 

frequency-dependent bias correction is based on normalized spectra (spectral values divided by 311 

the variance of the original time series) so that it leaves the overall variance unaltered. Therefore 312 

at every location the values in the left hand column summed across frequency bands totals 100%.  313 

The annual cycle (9-15 months band) dominates daily maximum temperature variability 314 

over almost all of the conterminous U.S., containing on average 62% of the variance. The main 315 

exceptions are along the California coast, Florida, and in a strip of the central U.S. downwind of 316 

the Rockies, where higher frequencies (< 9 months) contribute more than elsewhere.  317 

Models allocate less of the total variance to periods shorter than 9 months than observed. 318 

In the 10-30 day band, the mean error reaches −9% (not shown). The proportion of variance in 319 

the annual cycle is represented with little mean error and spread across models. Conversely, 320 

models allocate more of the total variance to periods longer than 30 months, with nearly ~40% 321 

more variance than observed, and the spread across models is large. However, the fraction of 322 

total variance in these long time scales is small (< 1%). 323 

Figure 6 shows the same analysis using daily precipitation. Periods between 2 and 10 324 

days contain the majority of the variance (~62%). The exception is the west coast, where 10 day 325 

to 9 month variability is nearly as important, and the annual cycle contains > 7% of the total 326 

variance. The models have a 5-10% mean bias towards too much short-period (2-10 day) 327 

variability along the west coast and upper Midwest, and too little variability in the southern Great 328 

Plains and the Gulf coast. Model-simulated precipitation variability at 30 months or longer 329 

accounts for an anomalously large proportion of the total variance in the southeastern U.S., and 330 

an anomalously small proportion in the Pacific Northwest. Such errors could arise from, for 331 
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example, misrepresentations of the frequency, strength, or teleconnections of ENSO or other 332 

low-frequency modes of natural climate variability. Rupp et al. (2013) also found that models 333 

overestimate temperature variance and underestimate precipitation variance at timescales longer 334 

than a year in the Pacific Northwest. Disagreements across the models are large at these longer 335 

periods.  336 

4.3 Frequency dependent bias correction 337 

To reduce the frequency-dependent model biases, the ratio σ of the model’s variance 338 

spectrum to the observed variance spectrum in the historical run is computed in each of the 100 339 

logarithmically spaced frequency bins. The model time series is then transformed to frequency 340 

space, and the amplitude of the Fourier components are multiplied by �(
)�
/� (the square root 341 

accounts for the fact that variance is proportional to the amplitude of the Fourier components 342 

squared). The result is then transformed back to the time domain. Basing the corrections on the 343 

historical run means that model-predicted future changes in the spectrum are retained, but 344 

assumes (like all statistical approaches) that model errors in the historical period are present in 345 

the future simulation as well. A more detailed illustration of the frequency-dependent bias 346 

correction process is given in the supplementary material, section S1. 347 

Even standard bias correction techniques such as QM, EDCDFm, and CDF-t alter the 348 

spectra of the time series they are applied to. To isolate the effect of the frequency dependent 349 

bias correction (FDBC), we first present results using only FDBC, then examine combined 350 

results using FDBC and standard bias correction. 351 

Example results of the FDBC using daily maximum temperature from the CCSM4 GCM 352 

are illustrated at a location in central Nevada (hot, dry) and a location in western Washington 353 

State (cool, wet) in the top panels of Figure 7. The error in the model’s representation of the 354 
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spectrum of variability decreases substantially after FDBC is applied (i.e., green circles in the 355 

right column of Figure 7 are much closer to 1). 356 

It is useful to define an RMSE metric appropriate for ratios, which we designate as log-357 

RMSE to differentiate it from standard RMSE measures more appropriate to differences. Let 358 

� = ln �; then 359 

log-RMSE ≡ exp	(〈��〉
/�) − 1																																																												(1) 

where the angle brackets indicate the mean over the logarithmically spaced frequency values. 360 

This expression treats equal ratios of error equally (i.e., the model having twice the observed 361 

variance produces the same error as the observations having twice the model’s variance), and the 362 

final −1 makes a perfect result (model variance equal observed, so σ = 1) give a log-RMSE of 0. 363 

In general, if the model values are incorrect (on average across log-spaced frequencies) by a 364 

factor of σ, then the log-RMSE is σ − 1. These log-RMSE values are indicated in the right 365 

column of Figure 7. When we refer to log-RMSE below, we specifically mean the model’s error 366 

in reproducing the distribution of variance across frequencies, as illustrated in Figure 7.  367 

Precipitation is more difficult to correct in frequency space than temperature because it 368 

cannot have negative values, which limits the adjustments FDBC can produce. There are also 369 

days with zero precipitation, and to avoid exacerbating the models’ drizzle problems (Sun et al. 370 

2006; Dai 2006) we leave unmodified any values less than 1 mm/day. In dry areas this can leave 371 

few days for FDBC to operate upon. 372 

Precipitation results at the two example locations are shown in the bottom panels of 373 

Figure 7. CCSM4 shows a much stronger than observed annual cycle at the hot dry location, 374 

likely related to the coarse model overestimating winter precipitation in the Sierra Nevada rain 375 
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shadow. The log-RMSE values show that despite the limitations inherent in correcting 376 

precipitation, errors decrease after FDBC. 377 

The multi-model ensemble average log-RMSE for daily maximum temperature is shown 378 

in the top row of Figure 8 both before (left column) and after (middle column) FDBC. The 379 

models’ spectra systematically disagree with the observations, particularly along the west coast 380 

and in a band extending north from northern Texas. Before FDBC the mean log-RMSE is 0.50; 381 

after FDBC the log-RMSE drops to 0.11. 382 

Results for daily precipitation are shown in the bottom row of Figure 8. The models do 383 

worse in the Rocky Mountains and Great Basin than elsewhere. As expected for the reasons 384 

given above, precipitation is less easily corrected than temperature; the mean log-RMSE for 385 

precipitation drops by less than a factor of 2 after FDBC.  386 

The histograms in Figure 8 (right column) show the difference between each grid cells’s 387 

corrected and original log-RMSE, pooled across every location and model. On average FDBC 388 

decreases the log-RMSE for daily maximum temperature by 0.39, and no locations are worse. 389 

Even for precipitation, which shows less improvement than temperature, the correction virtually 390 

always decreases the log-RMSE. 391 

Histograms of the amplitude of the corrections pooled across all models and locations are 392 

shown in Figure 9. Any day’s maximum temperature is changed less than 3°C about 95% of the 393 

time, although rarely the changes can exceed 4°C. The change in precipitation is less than 40% 394 

or 1.5 mm day-1 about 95% of the time, although on rare occasion can be more than 50% or 2.5 395 

mm day-1. Since FDBC operates on normalized spectra, altering the distribution of variance 396 

across frequencies without altering the overall variance, the mean changes are approximately 397 

zero. 398 
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4.3.1 Combined effects of standard and frequency-dependent bias correction 399 

The frequency dependent bias correction (FDBC) is implemented using normalized 400 

spectra so that the overall variance of the input time series are unchanged, since the technique is 401 

intended to be used in conjunction with standard bias correction. We evaluated FDBC in 402 

conjunction with quantile mapping (QM) since we want to compare the bias corrected results to 403 

observations, which are only available over the historical period. This in turn restricts this 404 

analysis to QM since the other bias correction methods differ from QM only in the future period. 405 

For daily maximum temperature, the models’ domain-average log-RMSE is 0.50 (Figure 406 

8, upper left). Using QM alone decreases this to 0.35, while using FDBC alone decreases this to 407 

0.11. The best results are obtained by using QM followed by FDBC, which not only preserves 408 

the decrease in log-RMSE, but makes no points in the domain worse. QM alone worsens the log-409 

RMSE at 9.6% of the grid cells. 410 

For daily precipitation, the models’ domain-average log-RMSE is 0.49, which drops to 411 

0.36 using QM alone, and 0.28 using FDBC alone. Using QM followed by FDBC gives the best 412 

result, a log-RMSE of 0.24. In this case 1.3% of the grid cells end up having a worse log-RMSE, 413 

which is still much better than the 22.9% of grid cells that are worsened by QM alone or the 414 

4.5% of cells worsened by FDBC followed by QM. This small but consistent superiority when 415 

applying QM before FDBC is the reason we perform the operations in this order. 416 

To evaluate the effect of FDBC on runoff in a hydrological simulation, we used the VIC 417 

hydrological model (Liang et al. 1994), configured for the western U.S. and forced over the 418 

period 1950-1999 with four sources of daily temperatures and precipitation: 1) observations 419 

(Livneh, 2013); 2) the CCSM4 GCM; 3) CCSM4 fields bias corrected using QM (since this is a 420 

historical simulation); 4) CCSM4 fields with QM and FDBC. We define the model error in 421 
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simulating runoff variability in a frequency band as the log (base 10) of the ratio of the spectral 422 

power of runoff found using the GCM forcing fields to the spectral power found using the 423 

observations. An error of +1 means the model has 10x too much spectral power in a given 424 

frequency band, while -1 means 10x too little power. Figure 10a shows that when driven by 425 

CCSM4 fields, VIC overestimates low-frequency runoff variance by more than an order of 426 

magnitude over much of the interior southwest, a result of CCSM4’s overly strong precipitation 427 

in the region. Bias correction (Figure 10b) improves the simulation markedly, while FDBC 428 

(Figure 10c) improves it somewhat more. Averaged across points in the domain, the mean error 429 

after bias correction is greatest at highest frequencies (Figure 10d, black line), and FDBC 430 

reduces the mean error at nearly all frequencies (red line), and overall by about a factor of 2 431 

compared to bias correction alone. 432 

5. Pre-conditioning and iterative bias correction 433 

Bias correction is typically applied in a time window. For example, it can be applied 434 

monthly, so all January values are bias corrected together, then all February values, etc., as in 435 

Wood et al. (2002) and Maurer et al. (2010). However monthly bias correction of daily data 436 

potentially has discontinuities at the edges of the time window (e.g., Jan 31 is corrected using 437 

information from Jan 1, which is 30 days away, but no information from Feb 1, which is only 438 

one day away). To reduce these discontinuities Thrasher et al. (2010) use a moving-window 439 

approach, where bias correction is applied on a single day-of-year at a time using pooled values 440 

from a surrounding 31 day time window as training data for better sampling. 441 

A drawback to using a time window of a month is that many weather extremes can occur 442 

anytime over a multi-month season. For example, the 20 highest values of California-averaged 443 



21 
 

daily precipitation over the period 1930-2002 have occurred as early as November and as late as 444 

February, while extreme hot days have occurred as early as June and as late as September. 445 

Ideally, the largest model value would be bias corrected to the largest observed value even if the 446 

maximum fell at the beginning of the season in the observations and the end of the season in the 447 

model. This argues for using a time window that is no narrower than a multi-month season if the 448 

extremes are distributed over a season. (Of course, if the variable being bias corrected truly does 449 

have all its extreme values fall in a single month of the year, then a single-month time window is 450 

appropriate.) A more complete illustration of the problems obtained when using a 31-day sliding 451 

time window is given in the supplementary material, section S2.  452 

In this work we apply bias correction over a 91-day window, chosen to be wide enough 453 

to encompass seasonal weather phenomena. To address the issue of discontinuities at the edges 454 

of time windows, we iteratively apply the bias correction two additional times, with windows of 455 

181 and 365 days, respectively. This ensures that every day is bias corrected with at least some 456 

information from adjoining days no matter where it falls in the initial 91-day window. A similar 457 

approach, dubbed “nested” bias correction, was adopted by Johnson and Sharma (2012), 458 

although they used it for a different purpose than is done here. We use fixed, non-overlapping 459 

time windows rather than moving ones to avoid the complications of matching quantiles in 460 

datasets with greatly different sizes. For example, consider the case described above of bias 461 

correcting a single central day-of-year using training data from the surrounding 31-day window, 462 

and the whole processes is moved through the year. In a 50-year record the training data will 463 

consist of 50*31=1550 days while the data to be corrected will consist of only 50 days. It is not 464 

straightforward to match the most extreme event in a 50-event record to the most extreme event 465 

in a 1550-event record. 466 
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The disadvantage to using a season-long time window is that the correction of the annual 467 

cycle worsens. Bias correction techniques such as QM, CDF-t, EDCDFm, and PresRat cannot 468 

rearrange the input time series’ corresponding rank time series (i.e., the time series of the rank of 469 

each value, where rank 1 is largest value in the time series, etc.). Instead, they change the 470 

association of ranks to values. Fixing a distorted simulation of the annual cycle requires 471 

rearranging the rank time series. For example, imagine that January is climatologically colder 472 

than February (the average rank of February days is less than the average January rank), but the 473 

model has this relationship reversed. Fixing this error requires rearranging the rank time series. 474 

The traditional approach to this problem is to apply bias correction in a relatively narrow 475 

time window. For example, using a simple monthly window ensures that the monthly means will 476 

be correct. However this does not address the discontinuities at the edges of the time window, 477 

nor the desirability of including all extreme values over an entire season when remapping the 478 

model distribution to the observed distribution. 479 

In our bias correction process, we precede the primary bias correction with a simple 480 

“preconditioning” step designed to correct the annual cycle. The bias correction can then be 481 

applied to a time series that has a rank order consistent with the observed annual cycle. For 482 

precipitation, every day’s value is multiplied by the ratio of the observed to model climatological 483 

value for that day of the year, where the climatologies are calculated over the historical period to 484 

allow changes in the future. For temperature, the preconditioning operates on the daily anomaly 485 

with respect to the period being downscaled. The model anomaly is multiplied by the ratio of the 486 

observed to model climatological standard deviation for that day (calculated over the historical 487 

period so it can change in the future), then added to the observed climatological value for that 488 

day (thus adjusting the annual cycle) plus the model-projected change in climatological value for 489 
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that day (to allow for future temperature changes). Since estimating a daily climatology from 30-490 

year records is noisy, the daily values are cubic spline interpolated between 15-day averages. 491 

This preconditioning is a basic form of bias correction, but would be unsatisfactory if applied 492 

alone since it corrects only on the mean value and, for temperature, the variance. Following the 493 

preconditioning by QM, CDF-t, EDCDFm, or PresRat addresses extreme values as well, which 494 

are of great societal importance. 495 

The effects of preconditioning on the annual cycle are illustrated using the CCSM4 GCM  496 

in Figure 11, which shows the RMSE difference between the observed and model simulated 497 

annual cycle of daily precipitation at each grid cell over the period 1976-2005. (The analogous 498 

figure for daily maximum temperature, which typically has a stronger annual cycle than 499 

precipitation, is shown in supplementary material Fig. S1.) Values are normalized by the annual 500 

mean at each point so that errors in arid and wet regions can be more easily compared. To reduce 501 

noise, the annual cycles are filtered with a 31-day boxcar filter before the RMSE is calculated. 502 

The original model has appreciable errors in the annual cycle (panel a), which are reduced with a 503 

simple monthly bias correction (panel b). Correcting a day at a time based on statistics of a 504 

surrounding 31-day window yields the least error (panel c). Using either a single 91-day window 505 

or our iterative approach with 91, 181, and 365-day windows gives mediocre results since the 506 

wide windows are less able to correct errors in the annual cycle, as described above (panels d and 507 

e). However, preconditioning helps substantially (panel f), giving a result with less error than 508 

monthly BC although somewhat more than with the sliding central day/31-day window 509 

approach. 510 

The annual cycle is important, but many societal impacts are affected more by extreme 511 

events. Figure 12 shows a scatterplot of sorted daily precipitation values in the CCSM4 GCM 512 
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and observations at a point in the central Sierra Nevada (37.5 °N, −119.5 °W; 1976-2005). In a 513 

perfect model values would fall along the diagonal (grey). Before bias correction (panel a), the 514 

model under-represents the strongest events by a factor of 2. Simple monthly bias correction 515 

(panel b) and using the central day in a 31-day wide sliding window (panel c) improve the 516 

representation considerably, but still with errors. Using a wide bias correction window gives 517 

good agreement between the observed and model-simulated extrema (panels d and e). 518 

Preconditioning, which addresses the annual cycle rather than the extremes, has little effect on 519 

this measure (panel f). 520 

Summary statistics of the modeled representation of extremes at every grid cell can be 521 

obtained by fitting a line between the top 5 observed and model extremes (dashed red lines in 522 

Figure 12). The slopes and intercepts of the lines at all locations can then be mapped (Figure 13). 523 

A perfect model representation of extremes would give a slope of 1 and intercept of 0. By this 524 

measure, the original model (panels a, b) has appreciable errors in its representation of daily 525 

extremes, as does the model after bias correction using either simple monthly BC (panels c, d) or 526 

BC using a central day in a sliding 31-day window (panels e, f). Using a wider, 91-day window 527 

improve the representation considerably (panels g, h), and iterating over the 91, 181, and 365- 528 

day windows gives excellent agreement between the model and observations (panels i, j). 529 

In summary, bias correction techniques that map one distribution to another are not 530 

optimally suited for correcting the annual cycle. The traditional solution of applying the 531 

correction in time windows of about a month is not necessarily a good fit with weather extremes, 532 

which in many locations can occur anytime in a multi-month season. To get around this problem, 533 

we use a simple preconditioning step that improves the representation of the annual cycle along 534 

with a relatively wide (91-day) time window for bias correction, and iterate the bias correction 535 
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twice (181- and 365-day windows) to reduce discontinuities at the edges of the window. The 536 

overall result yields a representation of the annual cycle that is superior to simple monthly bias 537 

correction and a distribution of extremes that agrees well with observations over the training 538 

period. 539 

6. Summary and Conclusions 540 

GCMs generally produce biased simulations of variables such as temperature and 541 

precipitation. It is necessary to remove these biases before using the model-simulated fields in 542 

applications that have non-linear sensitivities to biases, such as land surface or hydrological 543 

modeling. 544 

The choice of bias correction method is particularly important in climate change impact 545 

studies since bias correction can alter GCM projected mean changes. We demonstrate that 546 

quantile mapping (QM; Panofsky and Brier, 1968) or the CDF transform method (CDF-t; 547 

Michelangeli et al., 2009) can alter the original GCM-projected monthly mean change by up to 548 

2°C when bias correcting temperature and 30 percentage points when bias correcting 549 

precipitation. This introduces a source of uncertainty comparable to uncertainty from emission 550 

scenarios in some cases. The EDCDFm method (Li et al., 2010) preserves GCM changes in 551 

mean temperature, but not changes in mean precipitation measured multiplicatively (as a ratio or 552 

percentage change). We introduced an extension to EDCDFm for precipitation termed PresRat 553 

that preserves the model-projected percentage change in mean precipitation by using a model-554 

predicted change ratio (as in Wang and Chen 2014), but also a final correction factor and a zero-555 

precipitation threshold that makes the modeled number of zero-precipitation days match 556 

observations. However none of the bias correction techniques, PresRat included, can preserve the 557 
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model-predicted mean precipitation change in locations that are so dry there are insufficient 558 

precipitation days to bias correct. 559 

We also examined the more general issue of the models’ representation of variance 560 

across a range of timescales, and introduced a frequency-dependent bias correction method that 561 

reduces inaccuracies in the GCMs’ spectra. As a group, the 21 GCMs apportion too little 562 

variability of daily maximum temperature to times scales between 10 and 90 days and too much 563 

to time scales longer than 30 months. The models’ simulation of daily precipitation variability 564 

was more mixed, but at long timescales (> 30 months) they show more variability than observed 565 

in the Gulf coast region and less than observed in the Pacific Northwest. These problems can be 566 

reduced by a frequency-dependent bias correction implemented as digital filter in the frequency 567 

domain. This is one step towards addressing time-dependent model biases, an important subject 568 

that has many implications for impacts such as droughts and heat waves. We implement the 569 

frequency dependent bias correction as a separate step following the EDCDFm or PresRat bias 570 

correction, which means this step could be combined with any other existing bias correction 571 

method (such as quantile mapping or CDF-t) as well. However the current implementation 572 

operates on the entire time series of daily values, so frequency-dependent errors on the seasonal 573 

or monthly timescale can persist under some circumstances. 574 

Traditional bias correction is done in a time window, often of about a month, to reduce 575 

errors in the annual cycle. However in many locations weather extremes can occur sometime 576 

during a multi-month season, which argues for using a time window on the order of a season in 577 

such places. A simple preconditioning technique has been shown to yield a good simulation of 578 

the seasonal cycle even when using a season-wide time window. The end result captures both the 579 

extremes of the time series and the annual cycle. 580 
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This study has not addressed whether bias correction should be applied at any particular 581 

location given that model-observational disagreements are influenced by natural climate 582 

variability, which can be large and affect climate means over years to decades (e.g., Maraun et 583 

al. 2010; Deser et al. 2012). Although this is an interesting question, in this work we have 584 

followed the common practice of applying bias correction to the GCMs at all locations to bring 585 

them into agreement with a pre-selected recent climatological period. 586 

In the end, as global climate model results continue to be applied to investigate 587 

phenomena that are sensitive to model biases, bias correction will become an ever more 588 

important step.  The bias correction methods outlined here can improve these simulations, giving 589 

a clearer picture of future climate conditions for a variety of applications. 590 
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Appendix A: Details of spectral approach 599 

Ghil et al. 2002 review some of the numerous techniques that are available to compute 600 

variance spectra. Many newer methods have been developed to identify narrow-band signals 601 
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against a background of noise. However, in this work we are also concerned with the power in 602 

the broad parts of the spectrum that might in other applications be considered simply “noise”. 603 

This variability represents weather and climate fluctuations that affect hydrology and ecosystems 604 

across a wide range of time scales. Accordingly we use relatively wide bandwidths and employ 605 

the Jenkins and Watts (1969) method of computing variance spectra as the Fourier 606 

transformation of the autocovariance function. We require at least 40 degrees of freedom in the 607 

spectral estimates, which given 30 years of daily data and a Parzen lag window, means 608 

truncating the autocovariance function after 1020 lags (Jenkins and Watts 1969). Following the 609 

Jenkins and Watts recommendations the number of frequencies is set to twice the number of lags 610 

(2040), so the first non-zero frequency corresponds to a period of ~11 yrs. Longer periods are 611 

unresolved, and the frequency-dependent bias correction does not alter their relative proportion 612 

of variance. 613 

With over 2000 frequencies spanning from 2 days to 11 years it is useful to reduce the 614 

number of frequencies at which the model error is corrected to avoid spurious over-fitting. 615 

Accordingly, the frequency-dependent model errors are calculated in a reduced set of 100 616 

frequency bins of equal width in the logarithm of frequency. This means that higher frequency 617 

bins have multiple samples. All periods shorter than ~80 days have at least 5 samples per bin, 618 

reaching 140 samples at a period of 2 days. Averaging in bins therefore reduces the uncertainty 619 

in the spectral estimates for periods shorter than ~80 days. 620 

Von Storch and Zwiers (2001) note the problems in interpreting spectral plots on a 621 

logarithmic frequency axis, since the displayed area under the spectrum is no longer proportional 622 

to the variance. It is possible to maintain the property of being a spectral density if the spectral 623 

value is multiplied by frequency, or if the plotted values are integrated (as opposed to averaged) 624 
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across constant widths of the logarithmic frequency axis. However these approaches change the 625 

angle of a plotted spectrum (for example, a white spectrum is then no longer flat), which can be 626 

confusing. To avoid this potentially misleading situation, values shown here are simply averaged 627 

in frequency so that the spectra appear similar to what is typically found in the literature (i.e., a 628 

white spectrum is flat).  629 
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Figure Captions 730 

Figure 1. Cumulative distribution functions (CDFs) of synthetic daily precipitation data 731 

schematically illustrating how each bias correction method constructs the model’s bias corrected 732 
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future CDF (green dotted/dashed lines). The solid blue, grey, and red lines are the same in all 733 

panels and show the observed (1976-2005), model historical (1976-2005), and model future 734 

(2070-2099) CDFs, respectively. The example point being corrected is X=30 mm/day, which 735 

falls at the 0.56 quantile in the model future distribution (dotted orange line). a) Quantile 736 

mapping (QM): starting at the point to be corrected, go vertically to the grey line (1), 737 

horizontally to the blue line (2), and vertically to the original percentile (3). b) Equidistant CDF-738 

matching (EDCDFm): at the quantile of the point being corrected, compute the offset from the 739 

model historical value to the model future value (∆), then add ∆ to the observed value at the 740 

percentile being corrected (1). c) The CDF-transform (CDF-t) method; starting at the point to be 741 

corrected, go horizontally to the grey line (1), vertically to the blue line (2), and horizontally to 742 

the original value (3). d) Final results from all 3 bias correction methods (dotted/dashed green 743 

lines), along with the PresRat method (solid purple line) for comparison. Note that the X axis 744 

uses a square root transformation and the Y axis uses an inverse error function (“probability 745 

plot”) transformation. 746 

Figure 2.  a) Ensemble averaged across all 21 models, the mean difference between the 747 

bias-corrected and the original GCM-predicted changes (2070-2100 minus 1976-2005) in daily 748 

maximum temperature (°C). b) RMS spread of the differences between the bias-corrected and 749 

original GCM-predicted temperature changes across the 21 GCMs. Values are shown for 2 750 

months (rows) and 3 bias correction methods (columns). 751 

Figure 3.  As in Figure 2, but for precipitation, in units of percentage points. 752 

Figure 4. Correction factors, K, for the PresRat scheme that are necessary to preserve 753 

model-predicted changes (2070-2099 vs. 1976-2005) in mean precipitation, illustrated for four 754 

months. Values are averaged across 21 GCMs. White areas are within 5% of unity. 755 
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Figure 5. Left column: proportion (%) of total variance of daily maximum temperature 756 

that falls in the frequency band whose period is indicated in the panel title, from observations 757 

over the period 1976-2005. Note that the color range varies substantially by frequency band. 758 

Middle column: the multi-model mean error (%) for the same quantity in the GCMs, relative to 759 

the observations. Right column: the multi-model RMSE (%). 760 

Figure 6. As in Figure 5, but for daily precipitation. 761 

Figure 7. For daily maximum temperature (top panels) and precipitation (lower panels): 762 

the left column shows normalized spectra from observations (red line), CCSM4 (blue line), and 763 

CCSM4 after frequency-dependent bias correction (green dots and line). Right column: Ratio of 764 

CCSM4 spectral power to observations before (blue line) and after (green dots and line) 765 

frequency-dependent bias correction. Values are shown at a hot, dry location in central Nevada 766 

(39.5, −116.5), and a cool, wet location between Seattle and Portland (46.5, −122.5), as indicated 767 

in the panel titles. 768 

Figure 8. For daily maximum temperature (top row) and precipitation (bottom row), the 769 

multi-model ensemble average log-RMSE in simulating the observed distribution of variance 770 

across frequency, both before the frequency-dependent bias correction (left column) and after 771 

(middle column). Right: histograms of how the frequency-dependent bias correction changes the 772 

log-RMSE, taken over all models and all locations. 773 

Figure 9. Histograms of how much the frequency-dependent bias correction alters the 774 

daily temperature (left, °C) and precipitation (right two panels). The precipitation results are 775 

given both as the fraction change (%) and absolute change (mm/day). Results are shown for all 776 

the models across all points in the conterminous U.S. 777 
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Figure 10. Analysis of runoff simulated by the VIC hydrological model with various 778 

meteorological forcing fields. a) Error in simulated spectral power of runoff (at a period of 30 779 

yrs) when VIC is forced with temperature and precipitation fields from the CCSM4 GCM, where 780 

error is defined as log10(power using GCM forcing / power using observed forcing). b) Same as 781 

panel a, but using bias corrected (BC) GCM forcing fields. c) same as panel a, but using BC and 782 

frequency dependent bias corrected (FDBC) fields. d) Domain-averaged mean error as a function 783 

of frequency; black line is for BC forcing fields, dashed red line is for BC+FDBC forcing fields. 784 

Figure 11. RMS error (% of climatological annual mean value) in the annual cycle of 785 

precipitation (smoothed with a 31-day boxcar filter) as simulated by the CCSM4 model, using 786 

various bias correction approaches. a) Original model (no bias correction). b) Simply monthly 787 

BC. c) Single central day corrected based on statistics of a sliding 31-day window. d) 91-day 788 

window. e) Iterative BC with 91-, 181-, and 365-day windows, but no preconditioning. f) 789 

Iterative BC with preconditioning. 790 

Figure 12. Scatterplot of sorted daily precipitation values, observed versus model with the 791 

following bias correction applied: a) Original model data (no bias correction). b) Simple monthly 792 

BC. c) Single central day corrected based on statistics of a sliding 31-day window. d) 91-day 793 

window. e) Iterative BC with 91-, 181-, and 365-day windows, but no preconditioning. f) 794 

Iterative BC with preconditioning. The dashed red line shows the best fit least-squares line based 795 

on the 5 largest values. Model data are from the CCSM4 GCM at a point in the Sierra Nevada 796 

(37.5 °N, −119.5 °W), over the period 1976-2005. 797 

Figure 13. The slope (left column) and intercept (right column) of the best fit least-798 

squares line between the top 5 observed and modeled (CCSM4) extreme events for different bias 799 

correction approaches as indicated in the panel titles. 800 
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 801 

Abbreviation Model source/institution 

Access1-0 Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia 

Bcc-csm1-1 Beijing Climate Center, China 

Bnu-esm Beijing Normal University, China 

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 

CCSM4 National Center for Atmospheric Research, USA 

ECSM1-BGC National Center for Atmospheric Research, USA 

CNRM-CM5 Centre National de Recherches Meteorologiques, France 

CSIRO-Mk3.6.0 QCCCE & Commonwealth Scientific and Industrial Research 

Organization, Australia 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, Princeton, USA 

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, Princeton, USA 

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, Princeton, USA 

INMCM4 Institute of Numerical Mathematics Russian Academy of Sciences, 

Russia 

IPSL-CM5a-LR Institut Pierre-Simon Laplace, France 

IPSL-CM5a-MR Institut Pierre-Simon Laplace, France 

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, and 

National Inst. For Environ. Studies, Japan 

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, and 

National Inst. For Environ. Studies, Japan 

MIROC5 Atmosphere and Ocean Research Institute and Nat. Inst. For 

Environ. Studies, Japan 

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 

MRI-CGCM3 Meteorological Rsearch Institute, Japan 

NorESM1-m Norwegian Climate Centre 

Table 1. The GCMs used in this work and their originating institutions. 802 
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 803 

Figure 1. Cumulative distribution functions (CDFs) of synthetic daily precipitation data 804 

schematically illustrating how each bias correction method constructs the model’s bias corrected 805 

future CDF (green dotted/dashed lines). The solid blue, grey, and red lines are the same in all 806 

panels and show the observed (1976-2005), model historical (1976-2005), and model future 807 

(2070-2099) CDFs, respectively. The example point being corrected is X=30 mm/day, which 808 

falls at the 0.56 quantile in the model future distribution (dotted orange line). a) Quantile 809 

mapping (QM): starting at the point to be corrected, go vertically to the grey line (1), 810 

horizontally to the blue line (2), and vertically to the original percentile (3). b) Equidistant CDF-811 

matching (EDCDFm): at the quantile of the point being corrected, compute the offset from the 812 

model historical value to the model future value (∆), then add ∆ to the observed value at the 813 

percentile being corrected (1). c) The CDF-transform (CDF-t) method; starting at the point to be 814 

corrected, go horizontally to the grey line (1), vertically to the blue line (2), and horizontally to 815 

the original value (3). d) Final results from all 3 bias correction methods (dotted/dashed green 816 

lines), along with the PresRat method (solid purple line) for comparison. Note that the X axis 817 

uses a square root transformation and the Y axis uses an inverse error function (“probability 818 

plot”) transformation. 819 
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 820 

Figure 2.  a) Ensemble averaged across all 21 models, the mean difference between the 821 

bias-corrected and the original GCM-predicted changes (2070-2100 minus 1976-2005) in daily 822 

maximum temperature (°C). b) RMS spread of the differences between the bias-corrected and 823 

original GCM-predicted temperature changes across the 21 GCMs. Values are shown for 2 824 

months (rows) and 3 bias correction methods (columns).  825 

 826 
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 827 

Figure 3.  As in Figure 2, but for precipitation, in units of percentage points. 828 

 829 

 830 



41 
 

 831 

Figure 4. Correction factors, K, for the PresRat scheme that are necessary to preserve 832 

model-predicted changes (2070-2099 vs. 1976-2005) in mean precipitation, illustrated for four 833 

months. Values are averaged across 21 GCMs. White areas are within 5% of unity. 834 

 835 

 836 
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.  837 

Figure 5. Left column: proportion (%) of total variance of daily maximum temperature 838 

that falls in the frequency band whose period is indicated in the panel title, from observations 839 

over the period 1976-2005. Note that the color range varies substantially by frequency band. 840 

Middle column: the multi-model mean error (%) for the same quantity in the GCMs, relative to 841 

the observations. Right column: the multi-model RMSE (%). 842 
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 843 

Figure 6. As in Figure 5, but for daily precipitation.  844 
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 845 

Figure 7. For daily maximum temperature (top panels) and precipitation (lower panels): 846 

the left column shows normalized spectra from observations (red line), CCSM4 (blue line), and 847 

CCSM4 after frequency-dependent bias correction (green dots and line). Right column: Ratio of 848 

CCSM4 spectral power to observations before (blue line) and after (green dots and line) 849 

frequency-dependent bias correction. Values are shown at a hot, dry location in central Nevada 850 

(39.5, −116.5), and a cool, wet location between Seattle and Portland (46.5, −122.5), as indicated 851 

in the panel titles. 852 
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 853 

Figure 8. For daily maximum temperature (top row) and precipitation (bottom row), the 854 

multi-model ensemble average log-RMSE in simulating the observed distribution of variance 855 

across frequency, both before the frequency-dependent bias correction (left column) and after 856 

(middle column). Right: histograms of how the frequency-dependent bias correction changes the 857 

log-RMSE, taken over all models and all locations. 858 

 859 

 860 

/cir1/cmip5_regrid/get_rmse_all_models.R 861 
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 862 

Figure 9. Histograms of how much the frequency-dependent bias correction alters the 863 

daily temperature (left, °C) and precipitation (right two panels). The precipitation results are 864 

given both as the fraction change (%) and absolute change (mm/day). Results are shown for all 865 

the models across all points in the conterminous U.S. 866 
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 867 

Figure 10. Analysis of runoff simulated by the VIC hydrological model with various 868 

meteorological forcing fields. a) Error in simulated spectral power of runoff (at a period of 30 869 

yrs) when VIC is forced with temperature and precipitation fields from the CCSM4 GCM, where 870 

error is defined as log10(power using GCM forcing / power using observed forcing). b) Same as 871 

panel a, but using bias corrected (BC) GCM forcing fields. c) same as panel a, but using BC and 872 

frequency dependent bias corrected (FDBC) fields. d) Domain-averaged mean error as a function 873 

of frequency; black line is for BC forcing fields, dashed red line is for BC+FDBC forcing fields. 874 
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 875 

Figure 11. RMS error (% of climatological annual mean value) in the annual cycle of 876 

precipitation (smoothed with a 31-day boxcar filter) as simulated by the CCSM4 model, using 877 

various bias correction approaches. a) Original model (no bias correction). b) Simply monthly 878 

BC. c) Single central day corrected based on statistics of a sliding 31-day window. d) 91-day 879 

window. e) Iterative BC with 91-, 181-, and 365-day windows, but no preconditioning. f) 880 

Iterative BC with preconditioning. 881 
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 882 

Figure 12. Scatterplot of sorted daily precipitation values, observed versus model with the 883 

following bias correction applied: a) Original model data (no bias correction). b) Simple monthly 884 

BC. c) Single central day corrected based on statistics of a sliding 31-day window. d) 91-day 885 

window. e) Iterative BC with 91-, 181-, and 365-day windows, but no preconditioning. f) 886 

Iterative BC with preconditioning. The dashed red line shows the best fit least-squares line based 887 

on the 5 largest values. Model data are from the CCSM4 GCM at a point in the Sierra Nevada 888 

(37.5 °N, −119.5 °W), over the period 1976-2005. 889 
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 890 

Figure 13. The slope (left column) and intercept (right column) of the best fit least-891 

squares line between the top 5 observed and modeled (CCSM4) extreme events for different bias 892 

correction approaches as indicated in the panel titles. 893 


