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Abstract

Global climate model output typically needs to Ieskrorrected before it can be used for
climate change impact studies. Three existing t@asection methods, and a new one developed
here, are applied to daily maximum temperaturepadipitation from 21 global climate models
(GCMs) to investigate how different methods alter tlimate change signal of the GCM. The
guantile mapping (QM) and cumulative distributiemd¢tion transform (CDF-t) bias correction
methods can significantly alter the GCM’s mean alienchange signal, with differences of up to
2°C and 30 percentage points for monthly mean teatpe and precipitation, respectively.
Equidistant quantile matching (EDCDFm) bias coiitetpreserves GCM changes in mean daily
maximum temperature, but not precipitation. An asten to EDCDFm termed PresRat is
introduced, which generally preserves the GCM ckarig mean precipitation. Another problem
is that GCMs can have difficulty simulating variaras a function of frequency. To address this,
a frequency-dependent bias correction methodiiedated that is twice as effective as standard
bias correction in reducing errors in the modaeilsiidation of variance as a function of
frequency, and does so without making any locatwnise, unlike standard bias correction.
Lastly, a preconditioning technique is introducedttimproves the simulation of the annual

cycle while still allowing the bias correction ke account of an entire season’s values at once.
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1. Introduction

Climate impact assessments can be sensitive tesiiaglobal climate model (GCM)
output (IPCC, 2013). For example, precipitatiorsbedegrade hydrological simulations due to
the non-linear nature of runoff: a moderate amadiprecipitation generates little runoff if the
soil can absorb the moisture, while doubling thecgitation generates more than twice the
runoff if the moisture storage capacity of the soiéxceeded. This non-linear relationship
becomes more extreme in arid regions (Wigley ameég01985). Similarly, temperature biases
can influence the partition of precipitation intwosv or rain, affecting the snowpack and
therefore the timing and magnitude of runoff over éntire year.

For this reason hydrological simulations generaflig bias corrected GCM output. Bias
correction is often an integral part of downscal®@M output (e.g., Wood et al. 2002; Maurer
et al. 2010). Here however we consider the biasection step alone. Bias correction is best
applied on a spatial scale near the original GCdpatial resolution (Maraun, 2013), so we
examine bias correction on a grid commensurate théloriginal GCMs.

Many bias correction methods have been used iratdinmpact studies. One widely used
method is quantile mapping (QM; e.g., Panofsky Bndr 1968; Wood et al. 2002; Thrasher et
al. 2012), which adjusts a model value by mappuangjles of the model’s distribution onto
guantiles of the observations. QM has been apph@timate model output over both the U.S.
(e.g., Maurer et al. 2007, 2014) and globally (Bhex et al. 2012).

Previous studies have shown that QM alters the matgand even direction of mean
changes projected from the original GCM (Hagemaral.€2011; Pierce et al. 2013; Maurer and

Pierce 2013). This can engender confusion and sistamt results, for example between bias



62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

corrected GCM output for regional climate studied anadulterated GCM output evaluated by
the IPCC (2007, 2013). If a climate model has tacimvariability, QM tends to reduce
variability on all timescales, including the trefRilerce et al. 2013; Maurer and Pierce 2013). If
the GCM has too little variability, QM tends to rease the trend. Since bias correction is a
purely statistical method, it fails to discrimindtetween the physical processes determining
trends associated with anthropogenic forcing amdtehterm fluctuations associated with
natural internal climate variability. From this ppective there is little justification for allowing
bias correction that primarily addresses problemsymoptic, seasonal and annual timescales to
change the trend as well.

Although the correct long-term future trend in dcita variables is unknown, as witnessed
by the IPCC’s adoption of a “one model, one voteliqy for evaluating climate projections, in
this work we choose to implement a bias correcsidmeeme that does not alter the original GCM
trend. This reduces the disparity between globalehstudies with a given GCM and regional
models based on bias-corrected output from that GOer options for how to interpret the
long-term trend in a GCM that has incorrect shionescale variability await further research.

Other bias correction methods include the cumuadigtribution function transform
(CDF-t) method (Michelangeli et al. 2009), whicls@ses that the historical mapping between
the model and observed cumulative distribution fimms applies to the future period, and
equidistant quantile matching (EDCDFm; Li et al1@)) which preserves the GCM-predicted
change at each quantile evaluated additively @sthe future minus historical value). However
changes in precipitation are often more usefullgleated as multiplicative changes, since a
fixed amount of precipitation change has differiemglications in wet and arid regions. We

show that EDCDFm alters the GCM-predicted meanipitation change (evaluated
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multiplicatively), and CDF-t alters both the mogeé&dicted temperature and precipitation
changes. The first goal of this work is to showt thatraightforward extension to EDCDFm,
which we term “PresRat” (because it preservesdtie)rcan retain the model-predicted future
change in mean precipitation evaluated as a ratid®)(ang and Chen, 2014).

GCM biases in temporal variance can also pose @nabfor impact modeling. For
example, a model might have too much variabilitysgnoptic timescales yet too little on annual
timescales, making it challenging to represenfpiioper magnitude and spectra of phenomena
such as droughts. Although simulations have impiavigh the CMIP5 models, deficiencies still
remain in representing regional variability on natenual to decadal timescales (Sheffield et al.,
2013). QM, CDF-t, and EDCDFm do not address thibl@m. Such biases could influence the
simulation of heat waves or flooding events, withg€equences for agriculture, ecosystems,
droughts, or reservoir simulations. The second gb#iis work is to describe a method that
reduces frequency-dependent climate model biases.

Lastly, bias correction is typically implementedanime window, often of about a month
long. Choosing an appropriate time window involgempromises between correcting the
annual cycle, reducing discontinuities at the eafg@e time window, and evaluating extreme
values over an entire season. The third goal eftlirk is to show that a simple preconditioning
technigue together with iteratively applied biasreotion can improve the final corrected
seasonal cycle, while still allowing a seasonaktimndow and reducing discontinuities at the
window’s edges.

The rest of this work is structured as followsséttion 2 we describe the observed and
model data sources we use to evaluate the biasctiom schemes. Section 3 addresses the

problem of bias correction altering model-prediotédnges, and proposes an extension to the
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EDCDFm bias correction scheme that preserves nméeicted mean future changes in
precipitation. Section 4 addresses frequency-deggnmdodel biases, documents the extent to
which these are seen in the current generatiofobbgclimate models, and proposes a method
for reducing these biases. Section 5 shows howlsiprpconditioning together with an iterative
bias correction scheme can improve the representafithe annual cycle and reduce bias

measured in different windows. A summary and cagiohs are given in section 6.

2. Data sources and time periods

2.1 Global climate models

We use daily maximum temperature and precipitdiglds from 21 GCMs that
participated in the Coupled Model Intercomparisoojétt, version 5 (CMIP5; Taylor et al.,
2012), listed in Table 1. The models used arehalt¢ available from the U.S. Bureau of
Reclamation (USBR) archive of regridded (1°x1° liunde-latitude) CMIP5 global climate
models at the time this work was performed (ftjotdlg
dcp.uclinl.org/pub/dcp/archive/cmip5/bcca; Maureale 2014). GCM output was obtained from
both historical (1950-2005) runs and future (20089 runs using representative concentration

pathway 8.5 (RCP8.5).

2.2 Observations

We used observed daily maximum temperature andpgiaon data from Maurer et al.
(2002), as updated through 2010 (available from
http://www.engr.scu.edu/~emaurer/gridded_obs/indadded_obs.html). The ultimate source
of this gridded product is the NOAA co-operativesetver weather stations, with techniques
from the PRISM project (Daly et al. 1994) useddpuat observed precipitation values to match

6
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long-term PRISM climatology. The data come on & ¥/&/8° latitude-longitude grid, which we

aggregated to the same 1°x1° grid as the GCM output

2.3 Timeperiods

The World Meteorological Organization (WMO) recommds that climatological
normals be calculated over 30-year periods (Treid7). We follow this guidance by bias
correcting GCM values to a 30-yr climatologicaloet of observations, and furthermore by bias
correcting contiguous 30-yr segments of climateusitions individually. A different segment
length could be used, subject to two opposing deamations: 1) The segments should be long
enough to provide a reasonable estimate of theatdilmgical normals, given natural internal
climate variability; 2) The segments should be skapugh that the statistical characteristics of
the variable being downscaled are reasonably statyoover the period being downscaled. We
used 30 years as a compromise for these two exriteri

For the future model projections we bias correetghriods 2010-2039, 2040-2069, and
2070-2099 separately. In the results shown belovioamas on 2070-2099 as our “future” period.
The climatological (historical) period is the 18§t years of the GCMs’ historical runs (1976-
2005), used for both the models and observatioresbMk correct and evaluate the models over
the same historical period (1976-2005) so thaedtifice between the bias corrected results and
observations is known to be due to the bias caaredself, rather than due to differences in
climate between the historical period and an inddpat verification period (cf. Teutschbein and
Seibert, 2012). This differs from, for example, d®ealing, where an independent period is

typically used to evaluate the downscaled results.
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3. Preserving model-predicted mean changes

We evaluate temperature changes as a differencedfominus historical) and
precipitation changes as a ratio (future / hisadjicThis is unlike Maurer and Pierce (2013),
which evaluated precipitation changes as a diffeRlowever, evaluating precipitation changes
as a ratio can be useful since a fixed amountedipitation change has different implications in
an arid region than in a wet region.

The present work explores three approaches tacbirasction: preserving the mean
model-predicted change, reducing frequency-depdriases, and preconditioning and reducing
biases in different time windows. If all approackese implemented simultaneously it would be
difficult to distinguish the influence of each pealure on the resultant change. In this section we
use standard monthly bias correction (all Januahyes are bias corrected together, etc.)

excluding frequency-dependent bias correction ecqnditioning.
3.1 Effect of QM, CDF-t, and EDCDFm on model-predicted changes

3.1.1 Quantile Mapping

Quantile mapping (QM; Panofsky and Briar, 1968; Wet al. 2002) bias corrects a
model value by changing it to the observed valubaguantile that the model value falls in the
model’s historical distribution. The process isslirated schematically in Figure 1a, using CDFs
of synthetic gamma distributions to mimic precipda.

Averaged across the 21 GCMs, QM exaggerates momtean model-projected warming
(2070-2099 minus 1976-2005) in the Rockies in Jgnaad diminishes it in July (Figure 2a).
Maurer and Pierce (2013) showed why QM alters t68&IGrend when model variance is biased;
briefly, if the model’s variance is incorrect, QMeas the trend as it corrects the variance. Figure

2a shows multi-model mean values, but the modiboan any individual model can be much

8



174 greater. The RMS spread across the 21 models wasimoFigure 2b. The spread is appreciable
175 using the QM technique, with RMS values of up &2 and more spread is found in the warmer
176 months.

177 Figure 3 shows a similar analysis for precipitatievaluated multiplicatively in terms of
178 percentage change. QM tends to make the origindetredicted mean change wetter over the
179 Northwestern U.S. in January and California in Jlilye RMS spread across models is ~25

180 percentage points in parts of the Northwest in danwand exceeds 60 percentage points in the

181 dry California/Great Basin region in July.

182 3.1.2 CDF-t

183 CDF-t bias correction (Michelangeli et al. 2009)d§ a transformation that maps the

184 GCM cumulative distribution function (CDF) of ardlate variable in the historical period to the
185 observed CDF, then applies that same mapping tG@id’s future CDF. The process is

186 illustrated schematically in Figure 1c. When biagecting a historical run CDF-t reduces to

187 QM, although the treatment of values off the enthefdistribution (discussed below) comes

188 into play.

189 The second columns of Figure 2 and Figure 3 shatv@DF-t modifies the original

190 monthly mean temperature projection less than QMsbll on the order of 0.5 °C. CDF-t tends
191 to make the precipitation projections drier, whaeim be understood in terms of Figure 1c. To
192 produce a point on the bias corrected future @istion (dotted green line) it is necessary that the
193 model historical value at the quantile being biasected fall within the range of observed

194 values, as indicated by vector (2) in Figure 1cvAstor (2) progressively moves to the right in
195 Figure 1c, at higher quantiles it becomes imposdibimap future changes beyond the maximum

196 observed value. In this event, following Michelehet al. (2009), the correction used is that
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found at the maximum valid historical value. Howeweclimate projections the precipitation
distribution changes shape such that the mostragtevents increase preferentially (e.g., IPCC
2007, 2013). In this situation CDF-t uses a coroacthat falls at a lower quantile and so misses

the preferential increase in the highest quantiles.

3.1.3 EDCDFm

EDCDFm (Li et al. 2010) bias corrects a future eaddhat falls at quantile in the
future distribution by adding the historical valatei to the model predicted change in value.at
The process is illustrated schematically in Figlisg§note the non-linear X axis when
considering the length of tievector). When bias correcting a model historical, EDCDFm
reduces to QM.

EDCDFm preserves the GCM-predicted median changkiaed additively, but not
necessarily the mean change since the quantil@iahwihe mean falls can change in the future.
However, for daily maximum temperature, GCM-preglicthanges are generally a weak
function of quantile in the neighborhood of the mealue, so EDCDFm preserves the model-
predicted change in mean temperature to withimehigndredths of a degree C (third column of
Figure 2).

As expected, EDCDFm does not preserve GCM-predicséetional changes, i.e., (future
model value - historical model value)/(historicadaiel value). At every quantile EDCDFm
preserves the numerator of this ratio, but in tlee@ss of bias correction substitutes the
observed value for the historical model value mdenominator, changing the ratio. This is
illustrated in the third column of Figure 3. EDCDFatters the original model-predicted mean

precipitation change by more than 30 percentagetpa the dry (rain shadow) parts of the

10
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Northwest U.S. This will happen particularly whéeite are both large biases and large changes

in the upper quantiles of a skewed precipitatiagtriiution.

3.2 Biascorrection that preserves model-predicted mean changes

Given the same GCM input, QM, EDCDFm, and CDF-tpice different future
temperature and precipitation fields, and it iseimtious which one is correct. QM assumes that
the historical model error in value at a giwetue is preserved in the future (arrow (2) in Figure
la), EDCDFm assumes that the historical model @émrealue at a giveguantile is preserved in
the future { in Figure 1c), and CDF-t assumes that the hisabrimdel error imquantile at a
given quantile is preserved in the future (arroyii2Figure 1b). (The “missing” version of this
guartet of bias correction methods, which wouldiassthat the historical model error in
guantile at a givemalue is preserved in the future, could also be constauy

Here we explore an alternative assumption: thaG@#l-predicted mean change is
preserved in the bias corrected future projecti&XCDFm already preserves model-predicted
mean change in temperature (evaluated additivehydlf practical purposes, so we adopt it for
temperature. However an amended form is requiredrixipitation since we evaluate its
changes multiplicatively. If the predicted GCM vadufalls at quantilau, then the bias corrected
precipitation value is the historical valueuainultiplied by the model-predicted changaiat
evaluated as a ratio (i.e., model future preciitat model historical precipitation). This
preserves the model-predicted median (not meamgehavaluated multiplicatively. In fact, Li
et al. (2010) do this for a small number (~0.3%yd points that otherwise are “problematic”
when bias correcting precipitation additively, altigh they did not explore the implications of
preserving a model-predicted mean future precipiathange. Also, Wang and Chen (2014)

adopt this ratio-based approach for bias correginegipitation, although their stated reason is to

11
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avoid the negative precipitation values that maeyide when using additive factors. This scheme
cannot be applied at quantiles with no precipitatia which case we set the model-predicted
change ratio to 1.

Applying EDCDFm with model-predicted change raigsnly part of the solution to
preserving the original model-predicted mean chabgeause the quantile at which the mean
falls can change between the historical and fuperéod if the shape of the distribution changes.
Although this results in negligible errors in temgere, precipitation distributions are more
skewed and GCMs can show significantly varying gecopns of future change as a function of
guantile. However, the mean precipitation changebsapreserved exactly if the bias corrected
value is multiplied by a correction factkir= (x)/(x), wherex is the change (expressed as a
ratio) in mean precipitation from the GCMWl|s the change in mean precipitation following bias
correction, and brackets indicate that the meaakisn over all days in the temporal window
(monthly here).

The treatment of zero-precipitation days is an irtgeu consideration for regional
climate change (Polade et al. 2014). At each glbvee calculate a location-specific zero-
precipitation thresholdz , such that applying makes the model’'s number of zero-precipitation
days match observations over the historical pefide.requirer >= 0.01 mm/day to avoid the
possibility of very small denominators in the megetdicted change ratio. Current GCMs tend
to precipitate too frequently, often at daily amtsuabove 0.01 mm, so this limit is rarely
invoked. The GCM-predicted future fraction of zemecipitation daysZy , is calculated using
with the GCM'’s original (non-bias corrected) futdie series. The model data is then bias
corrected, and the smalleg} fraction of precipitation values are set to zdtois preserves the

model-predicted change in fraction of non-precipiadays, even if it increases. However if the
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model has a strong dry bias, so that it has mamg m&ro-precipitation days than observed, the
model predicted change in zero precipitation dagg not be preserved since there is no way to
know which of the extra zero-precipitation dayswdbde set to a positive value.

We call the combination of using the model-prediatbange ratio, the treatment of zero
precipitation days outlined above, and the finatection factor, the PresRat bias-correction
method because it preserves the mean GCM-predigi@e mean precipitation change
evaluated as a ratio. Figure 1d includes resuts fPresRat applied to the synthetic example
data (purple line).

Corrections that PresRat requires to maintain tbdelpredicted mean precipitation
change are second order, arising from change®ipdtcentile at which the mean falls combined
with differing model-predicted changes at differpatcentiles, and so tend to be modest. Figure
4 showsK for four different months averaged across all ZIMS. In any given month using the
model change ratio alone tends to alter the mocsligted mean change by less than 5% in
most of the region. In some places though, especalifornia in the summer, PresRat requires
substantial corrections to preserve the model-ptedimean change.

By construction, PresRat preserves the model-piejlemean precipitation change almost
exactly (rightmost column of Figure 3). Discrepasconly arise due to problems with the
model’'s number of zero-precipitation days, as naiaolve.

In summary, both temperature and precipitationlbias corrected using methods that
preserve GCM-predicted future mean changes. Dairfgelps minimize confusion and
inconsistent results between downscaled regioimaht® simulations and global model analyses,

such as in the IPCC reports (2007, 2013). This misans that model-predicted mean changes

13



287 can be subsequently downscaled if desired (cf. Wab@d. 2002, who remove the mean GCM

288 change before downscaling and then add it backvedtels).

289 4. Frequency Dependent Bias Correction

290 4.1 Overview

291 The effect of bias correction on model-predicteshtis is a special case of the effect of
292 bias correction on variability evaluated at longu(iclecadal) timescales. We now address the
293 more general question of model biases at diffelier@scales and how to reduce them.

294 Details of our spectral approach are given in AgipeA. In brief, the model variance is
295 compared to observations in 100 logarithmicallycgpfrequency bins. A digital filter is then
296 applied in frequency space to make the model spadbetter match observations. One caveat is
297 that we do not consider frequency-dependent biasdifferent seasons or months, only as a
298 whole over the entire time period. This potentiaigans that it is not feasible to expect a

299 removal of biases across all timescales of intdngshis technique (e.g., bias correcting 2-10
300 day timescale temperature biases in winter and srmsaparately).

301 Since we bias correct in 30-yr periods (section, 2t PresRat method will preserve
302 model-predicted mean changes at periods of 30 wear$onger in the future projection.

303 Accordingly we consider, at most, periods from whays (the Nyquist frequency given daily
304 model output) to 30 years. This interval is furthefined to two days to 11 years in light of our

305 spectral analysis technique (Appendix A).

306 4.2 Frequency dependent model errors
307 Figure 5 shows the observed (1976-2005) distrilpudiovariance in daily maximum
308 temperature across frequencies (labeled using algmivperiods; left column), and the multi-
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model mean errors in representing this distribu¢rarddle column). The right column shows
multi-model RMSE (i.e., at each point, the sprebidatues across the 21 models). The
frequency-dependent bias correction is based amalred spectra (spectral values divided by
the variance of the original time series) so thidves the overall variance unaltered. Therefore
at every location the values in the left hand caltsammed across frequency bands totals 100%.

The annual cycle (9-15 months band) dominates daélyimum temperature variability
over almost all of the conterminous U.S., contajron average 62% of the variance. The main
exceptions are along the California coast, Floréhal in a strip of the central U.S. downwind of
the Rockies, where higher frequencies (< 9 mortbsjribute more than elsewhere.

Models allocate less of the total variance to mksishorter than 9 months than observed.
In the 10-30 day band, the mean error reaches A8¥%shown). The proportion of variance in
the annual cycle is represented with little meaoreand spread across models. Conversely,
models allocate more of the total variance to pErionger than 30 months, with nearly ~40%
more variance than observed, and the spread aniadsls is large. However, the fraction of
total variance in these long time scales is srsall%).

Figure 6 shows the same analysis using daily pitatign. Periods between 2 and 10
days contain the majority of the variance (~62%e €xception is the west coast, where 10 day
to 9 month variability is nearly as important, ahd annual cycle contains > 7% of the total
variance. The models have a 5-10% mean bias tow@odsuch short-period (2-10 day)
variability along the west coast and upper Midwast] too little variability in the southern Great
Plains and the Gulf coast. Model-simulated preatmt variability at 30 months or longer
accounts for an anomalously large proportion ofttital variance in the southeastern U.S., and

an anomalously small proportion in the Pacific Mar¢st. Such errors could arise from, for
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example, misrepresentations of the frequency, gtheor teleconnections of ENSO or other
low-frequency modes of natural climate variabilBupp et al. (2013) also found that models
overestimate temperature variance and underestpnateitation variance at timescales longer
than a year in the Pacific Northwest. Disagreemaatsss the models are large at these longer

periods.

4.3 Frequency dependent bias correction

To reduce the frequency-dependent model biasesatioer of the model’s variance
spectrum to the observed variance spectrum inigterical run is computed in each of the 100
logarithmically spaced frequency bins. The modaktseries is then transformed to frequency
space, and the amplitude of the Fourier compormmtsultiplied by (f)~1/2 (the square root
accounts for the fact that variance is proportidgadhe amplitude of the Fourier components
squared). The result is then transformed backedithe domain. Basing the corrections on the
historical run means that model-predicted futurangjes in the spectrum are retained, but
assumes (like all statistical approaches) that inaders in the historical period are present in
the future simulation as well. A more detailedsliation of the frequency-dependent bias
correction process is given in the supplementargena, section S1.

Even standard bias correction techniques such asERMDFm, and CDF-t alter the
spectra of the time series they are applied tasdlate the effect of the frequency dependent
bias correction (FDBC), we first present resultsig®nly FDBC, then examine combined
results using FDBC and standard bias correction.

Example results of the FDBC using daily maximumpenature from the CCSM4 GCM
are illustrated at a location in central Nevadda,(Hoy) and a location in western Washington

State (cool, wet) in the top panels of Figure 7e €fror in the model’s representation of the
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spectrum of variability decreases substantiallgrafDBC is applied (i.e., green circles in the
right column of Figure 7 are much closer to 1).

It is useful to define an RMSE metric appropriaieratios, which we designate as log-
RMSE to differentiate it from standard RMSE measum®re appropriate to differences. Let
€ = Ina; then

log-RMSE = exp({(€?)1/?) — 1 (D

where the angle brackets indicate the mean ovdogaithmically spaced frequency values.
This expression treats equal ratios of error egua#., the model having twice the observed
variance produces the same error as the obsersdtaing twice the model’s variance), and the
final -1 makes a perfect result (modekiance equal observed, g& 1) give a log-RMSE of 0.
In general, if the model values are incorrect (e@rage across log-spaced frequencies) by a
factor ofs, then the log-RMSE is — 1. These log-RMSE values are indicated in thietrig
column of Figure 7. When we refer to log-RMSE belawe specifically mean the model’s error
in reproducing the distribution of variance acriseguencies, as illustrated in Figure 7.

Precipitation is more difficult to correct in fregpcy space than temperature because it
cannot have negative values, which limits the ddjaats FDBC can produce. There are also
days with zero precipitation, and to avoid exacenigethe models’ drizzle problems (Sun et al.
2006; Dai 2006) we leave unmodified any valuesfleaa 1 mm/day. In dry areas this can leave
few days for FDBC to operate upon.

Precipitation results at the two example locatiaresshown in the bottom panels of
Figure 7. CCSM4 shows a much stronger than obsemedal cycle at the hot dry location,

likely related to the coarse model overestimatimgtev precipitation in the Sierra Nevada rain
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shadow. The log-RMSE values show that despiteithigations inherent in correcting
precipitation, errors decrease after FDBC.

The multi-model ensemble average log-RMSE for daifkimum temperature is shown
in the top row of Figure 8 both before (left colunamd after (middle column) FDBC. The
models’ spectra systematically disagree with theeolations, particularly along the west coast
and in a band extending north from northern TeBa$ore FDBC the mean log-RMSE is 0.50;
after FDBC the log-RMSE drops to 0.11.

Results for daily precipitation are shown in thétdm row of Figure 8. The models do
worse in the Rocky Mountains and Great Basin thisewdere. As expected for the reasons
given above, precipitation is less easily correthaoh temperature; the mean log-RMSE for
precipitation drops by less than a factor of 2rafeBC.

The histograms in Figure 8 (right column) showdiféerence between each grid cells’s
corrected and original log-RMSE, pooled acrosselaration and model. On average FDBC
decreases the log-RMSE for daily maximum tempeeabyr0.39, and no locations are worse.
Even for precipitation, which shows less improvehtban temperature, the correction virtually
always decreases the log-RMSE.

Histograms of the amplitude of the corrections pdacross all models and locations are
shown in Figure 9. Any day’s maximum temperaturehianged less than 3°C about 95% of the
time, although rarely the changes can exceed 4R€ change in precipitation is less than 40%
or 1.5 mm day about 95% of the time, although on rare occasisnie more than 50% or 2.5
mm day'. Since FDBC operates on normalized spectra, affehe distribution of variance
across frequencies without altering the overaliarare, the mean changes are approximately

Zero.
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4.3.1 Combined effects of standard and frequency-dependent bias correction

The frequency dependent bias correction (FDBOnh@emented using normalized
spectra so that the overall variance of the injpog tseries are unchanged, since the technique is
intended to be used in conjunction with standaad lsorrection. We evaluated FDBC in
conjunction with quantile mapping (QM) since we wemcompare the bias corrected results to
observations, which are only available over théohisal period. This in turn restricts this
analysis to QM since the other bias correction washdiffer from QM only in the future period.

For daily maximum temperature, the models’ domaierage log-RMSE is 0.50 (Figure
8, upper left). Using QM alone decreases this 36,0while using FDBC alone decreases this to
0.11. The best results are obtained by using QMvi@d by FDBC, which not only preserves
the decrease in log-RMSE, but makes no pointsardtimain worse. QM alone worsens the log-
RMSE at 9.6% of the grid cells.

For daily precipitation, the models’ domain-averdggpRMSE is 0.49, which drops to
0.36 using QM alone, and 0.28 using FDBC alonenty QM followed by FDBC gives the best
result, a log-RMSE of 0.24. In this case 1.3% efghid cells end up having a worse log-RMSE,
which is still much better than the 22.9% of gredl€ that are worsened by QM alone or the
4.5% of cells worsened by FDBC followed by QM. Taimall but consistent superiority when
applying QM before FDBC is the reason we perforendperations in this order.

To evaluate the effect of FDBC on runoff in a hytdgacal simulation, we used the VIC
hydrological model (Liang et al. 1994), configuffed the western U.S. and forced over the
period 1950-1999 with four sources of daily tempgées and precipitation: 1) observations
(Livneh, 2013); 2) the CCSM4 GCM; 3) CCSM4 fieldascorrected using QM (since this is a

historical simulation); 4) CCSM4 fields with QM aR@BC. We define the model error in
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simulating runoff variability in a frequency bansl the log (base 10) of the ratio of the spectral
power of runoff found using the GCM forcing fielttsthe spectral power found using the
observations. An error of +1 means the model hasd® much spectral power in a given
frequency band, while -1 means 10x too little powégure 10a shows that when driven by
CCSM4 fields, VIC overestimates low-frequency rdn@afriance by more than an order of
magnitude over much of the interior southwest salteof CCSM4’s overly strong precipitation
in the region. Bias correction (Figure 10b) impretee simulation markedly, while FDBC
(Figure 10c) improves it somewhat more. Averagedsscpoints in the domain, the mean error
after bias correction is greatest at highest fragies (Figure 10d, black line), and FDBC
reduces the mean error at nearly all frequencessliine), and overall by about a factor of 2

compared to bias correction alone.

5. Pre-conditioning and iterative bias correction

Bias correction is typically applied in a time wowl. For example, it can be applied
monthly, so all January values are bias correcigdther, then all February values, etc., as in
Wood et al. (2002) and Maurer et al. (2010). Howewenthly bias correction of daily data
potentially has discontinuities at the edges oftitme window (e.g., Jan 31 is corrected using
information from Jan 1, which is 30 days away, muinformation from Feb 1, which is only
one day away). To reduce these discontinuitiesshaaet al. (2010) use a moving-window
approach, where bias correction is applied on glesigay-of-year at a time using pooled values
from a surrounding 31 day time window as trainiagadfor better sampling.

A drawback to using a time window of a month ig timany weather extremes can occur

anytime over a multi-month season. For example2€hkighest values of California-averaged
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daily precipitation over the period 1930-2002 haceurred as early as November and as late as
February, while extreme hot days have occurregdyg as June and as late as September.
Ideally, the largest model value would be biasetted to the largest observed value even if the
maximum fell at the beginning of the season indbgervations and the end of the season in the
model. This argues for using a time window thatasharrower than a multi-month season if the
extremes are distributed over a season. (Of colfithes variable being bias corrected truly does
have all its extreme values fall in a single maoottthe year, then a single-month time window is
appropriate.) A more complete illustration of theljems obtained when using a 31-day sliding
time window is given in the supplementary matesaftion S2.

In this work we apply bias correction over a 91-dagdow, chosen to be wide enough
to encompass seasonal weather phenomena. To attiressue of discontinuities at the edges
of time windows, we iteratively apply the bias @mtion two additional times, with windows of
181 and 365 days, respectively. This ensures teay @ay is bias corrected with at least some
information from adjoining days no matter whertalts in the initial 91-day window. A similar
approach, dubbed “nested” bias correction, wastaddpy Johnson and Sharma (2012),
although they used it for a different purpose tisatione here. We use fixed, non-overlapping
time windows rather than moving ones to avoid thelications of matching quantiles in
datasets with greatly different sizes. For examgbesider the case described above of bias
correcting a single central day-of-year using irgrdata from the surrounding 31-day window,
and the whole processes is moved through the fear50-year record the training data will
consist of 50*31=1550 days while the data to beexded will consist of only 50 days. It is not
straightforward to match the most extreme evemat 50-event record to the most extreme event

in a 1550-event record.
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The disadvantage to using a season-long time wingdlat the correction of the annual
cycle worsens. Bias correction techniques suchMsCDF-t, EDCDFm, and PresRat cannot
rearrange the input time series’ corresponding tamé& series (i.e., the time series of the rank of
each value, where rank 1 is largest value in the 8eries, etc.). Instead, they change the
association of ranks to values. Fixing a distodieaulation of the annual cycle requires
rearranging the rank time series. For example, ingailpat January is climatologically colder
than February (the average rank of February dagsssthan the average January rank), but the
model has this relationship reversed. Fixing thisrerequires rearranging the rank time series.

The traditional approach to this problem is to ggpas correction in a relatively narrow
time window. For example, using a simple monthlpaaw ensures that the monthly means will
be correct. However this does not address the wliseoties at the edges of the time window,
nor the desirability of including all extreme vaduaver an entire season when remapping the
model distribution to the observed distribution.

In our bias correction process, we precede thegsyirnias correction with a simple
“preconditioning” step designed to correct the almycle. The bias correction can then be
applied to a time series that has a rank orderistams with the observed annual cycle. For
precipitation, every day’s value is multiplied thetratio of the observed to model climatological
value for that day of the year, where the climagae are calculated over the historical period to
allow changes in the future. For temperature, tieegnditioning operates on the daily anomaly
with respect to the period being downscaled. Thdehanomaly is multiplied by the ratio of the
observed to model climatological standard deviatarthat day (calculated over the historical
period so it can change in the future), then addeble observed climatological value for that

day (thus adjusting the annual cycle) plus the pdgected change in climatological value for
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that day (to allow for future temperature changggjce estimating a daily climatology from 30-
year records is noisy, the daily values are cuplios interpolated between 15-day averages.
This preconditioning is a basic form of bias coti@t, but would be unsatisfactory if applied
alone since it corrects only on the mean value fmndemperature, the variance. Following the
preconditioning by QM, CDF-t, EDCDFm, or PresRalli@dses extreme values as well, which
are of great societal importance.

The effects of preconditioning on the annual cyekeillustrated using the CCSM4 GCM
in Figure 11, which shows the RMSE difference betwthe observed and model simulated
annual cycle of daily precipitation at each gritl oger the period 1976-2005. (The analogous
figure for daily maximum temperature, which typlgdias a stronger annual cycle than
precipitation, is shown in supplementary materigl 51.) Values are normalized by the annual
mean at each point so that errors in arid and ggions can be more easily compared. To reduce
noise, the annual cycles are filtered with a 31loaxcar filter before the RMSE is calculated.
The original model has appreciable errors in theuahcycle (panel a), which are reduced with a
simple monthly bias correction (panel b). Corregtanday at a time based on statistics of a
surrounding 31-day window yields the least err@n@d c). Using either a single 91-day window
or our iterative approach with 91, 181, and 365 \@adows gives mediocre results since the
wide windows are less able to correct errors inatmeual cycle, as described above (panels d and
e). However, preconditioning helps substantiallgn@ f), giving a result with less error than
monthly BC although somewhat more than with theirs§ central day/31-day window
approach.

The annual cycle is important, but many societgldots are affected more by extreme

events. Figure 12 shows a scatterplot of sortel¢ gegcipitation values in the CCSM4 GCM
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and observations at a point in the central Siemaada (37.5 °N, —119.5 °W,; 1976-2005). In a
perfect model values would fall along the diagdigaty). Before bias correction (panel a), the
model under-represents the strongest events lgter faf 2. Simple monthly bias correction
(panel b) and using the central day in a 31-daywidling window (panel c) improve the
representation considerably, but still with erradsing a wide bias correction window gives
good agreement between the observed and modelatadwxtrema (panels d and e).
Preconditioning, which addresses the annual cytheer than the extremes, has little effect on
this measure (panel f).

Summary statistics of the modeled representati@xwémes at every grid cell can be
obtained by fitting a line between the top 5 obedrand model extremes (dashed red lines in
Figure 12). The slopes and intercepts of the lates| locations can then be mapped (Figure 13).
A perfect model representation of extremes wowe @i slope of 1 and intercept of 0. By this
measure, the original model (panels a, b) has agtile errors in its representation of daily
extremes, as does the model after bias correctimyg wither simple monthly BC (panels c, d) or
BC using a central day in a sliding 31-day wind@arels e, f). Using a wider, 91-day window
improve the representation considerably (panetg,gand iterating over the 91, 181, and 365-
day windows gives excellent agreement between tigeirand observations (panels i, j).

In summary, bias correction techniques that mapdistebution to another are not
optimally suited for correcting the annual cycléeTraditional solution of applying the
correction in time windows of about a month is netessarily a good fit with weather extremes,
which in many locations can occur anytime in a imualbnth season. To get around this problem,
we use a simple preconditioning step that imprdkiesepresentation of the annual cycle along

with a relatively wide (91-day) time window for Biaorrection, and iterate the bias correction
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twice (181- and 365-day windows) to reduce discuiities at the edges of the window. The
overall result yields a representation of the ahoyele that is superior to simple monthly bias
correction and a distribution of extremes that agneell with observations over the training

period.

6. Summary and Conclusions

GCMs generally produce biased simulations of végbuch as temperature and
precipitation. It is necessary to remove thesedsi&efore using the model-simulated fields in
applications that have non-linear sensitivitiebitses, such as land surface or hydrological
modeling.

The choice of bias correction method is particylariportant in climate change impact
studies since bias correction can alter GCM preptatean changes. We demonstrate that
guantile mapping (QM; Panofsky and Brier, 1968)har CDF transform method (CDF-t;
Michelangeli et al., 2009) can alter the origin&I&-projected monthly mean change by up to
2°C when bias correcting temperature and 30 peagenoints when bias correcting
precipitation. This introduces a source of uncatyacomparable to uncertainty from emission
scenarios in some cases. The EDCDFm method (WL, &C4.0) preserves GCM changes in
mean temperature, but not changes in mean prampitaaeasured multiplicatively (as a ratio or
percentage change). We introduced an extensioD@CEm for precipitation termed PresRat
that preserves the model-projected percentage ehiangean precipitation by using a model-
predicted change ratio (as in Wang and Chen 214 also a final correction factor and a zero-
precipitation threshold that makes the modeled rerrobzero-precipitation days match

observations. However none of the bias correcechriiques, PresRat included, can preserve the

25



558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

model-predicted mean precipitation change in locetithat are so dry there are insufficient
precipitation days to bias correct.

We also examined the more general issue of the Isiodpresentation of variance
across a range of timescales, and introduced adrey-dependent bias correction method that
reduces inaccuracies in the GCMs’ spectra. As agrihe 21 GCMs apportion too little
variability of daily maximum temperature to timeskes between 10 and 90 days and too much
to time scales longer than 30 months. The modatailation of daily precipitation variability
was more mixed, but at long timescales (> 30 mgritiey show more variability than observed
in the Gulf coast region and less than observeddrPacific Northwest. These problems can be
reduced by a frequency-dependent bias correctiptermented as digital filter in the frequency
domain. This is one step towards addressing tinpentent model biases, an important subject
that has many implications for impacts such as ghtsiand heat waves. We implement the
frequency dependent bias correction as a sepdegdatiowing the EDCDFm or PresRat bias
correction, which means this step could be combwigid any other existing bias correction
method (such as quantile mapping or CDF-t) as Wglvever the current implementation
operates on the entire time series of daily valsestequency-dependent errors on the seasonal
or monthly timescale can persist under some cirtamees.

Traditional bias correction is done in a time windoften of about a month, to reduce
errors in the annual cycle. However in many locaioeather extremes can occur sometime
during a multi-month season, which argues for usitigne window on the order of a season in
such places. A simple preconditioning techniquelb&en shown to yield a good simulation of
the seasonal cycle even when using a season-wigentindow. The end result captures both the

extremes of the time series and the annual cycle.
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This study has not addressed whether bias corregtiauld be applied at any particular
location given that model-observational disagredmare influenced by natural climate
variability, which can be large and affect climateans over years to decades (e.g., Maraun et
al. 2010; Deser et al. 2012). Although this israeriesting question, in this work we have
followed the common practice of applying bias cotign to the GCMs at all locations to bring
them into agreement with a pre-selected recentattitogical period.

In the end, as global climate model results comtittube applied to investigate
phenomena that are sensitive to model biasesgcbrasction will become an ever more
important step. The bias correction methods cedlinere can improve these simulations, giving

a clearer picture of future climate conditionsdorariety of applications.
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Appendix A: Details of spectral approach

Ghil et al. 2002 review some of the numerous temples that are available to compute

variance spectra. Many newer methods have beerogpexkto identify narrow-band signals

27



602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

against a background of noise. However, in thiskwee are also concerned with the power in
the broad parts of the spectrum that might in o#tfpglications be considered simply “noise”.
This variability represents weather and climatetilations that affect hydrology and ecosystems
across a wide range of time scales. Accordinglysesrelatively wide bandwidths and employ
the Jenkins and Watts (1969) method of computimanee spectra as the Fourier
transformation of the autocovariance function. \&guire at least 40 degrees of freedom in the
spectral estimates, which given 30 years of dalp@&nd a Parzen lag window, means
truncating the autocovariance function after 16§ I(Jenkins and Watts 1969). Following the
Jenkins and Watts recommendations the number qiiérecies is set to twice the number of lags
(2040), so the first non-zero frequency correspdaasperiod of ~11 yrs. Longer periods are
unresolved, and the frequency-dependent bias ¢mmedoes not alter their relative proportion
of variance.

With over 2000 frequencies spanning from 2 daykltgears it is useful to reduce the
number of frequencies at which the model errooisected to avoid spurious over-fitting.
Accordingly, the frequency-dependent model erroescalculated in a reduced set of 100
frequency bins of equal width in the logarithm iduency. This means that higher frequency
bins have multiple samples. All periods shortentk80 days have at least 5 samples per bin,
reaching 140 samples at a period of 2 days. Avegagi bins therefore reduces the uncertainty
in the spectral estimates for periods shorter tf&hdays.

Von Storch and Zwiers (2001) note the problemsiarpreting spectral plots on a
logarithmic frequency axis, since the displayeganeder the spectrum is no longer proportional
to the variance. It is possible to maintain theperrty of being a spectral density if the spectral

value is multiplied by frequency, or if the plottedlues are integrated (as opposed to averaged)
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625 across constant widths of the logarithmic frequesrdg. However these approaches change the
626 angle of a plotted spectrum (for example, a whitecgrum is then no longer flat), which can be
627 confusing. To avoid this potentially misleadinguation, values shown here are simply averaged
628 in frequency so that the spectra appear similartat is typically found in the literature (i.e., a

629 white spectrum is flat).
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Figure Captions

Figure 1. Cumulative distribution functions (CDIe$)synthetic daily precipitation data

schematically illustrating how each bias correctioethod constructs the model’s bias corrected
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future CDF (green dotted/dashed lines). The sdlid,lgrey, and red lines are the same in all
panels and show the observed (1976-2005), modelritial (1976-2005), and model future
(2070-2099) CDFs, respectively. The example poamdp corrected is X=30 mm/day, which
falls at the 0.56 quantile in the model future ridsttion (dotted orange line). a) Quantile
mapping (QM): starting at the point to be correctgvertically to the grey line (1),
horizontally to the blue line (2), and verticaltythe original percentile (3). b) Equidistant CDF-
matching (EDCDFm): at the quantile of the pointrigecorrected, compute the offset from the
model historical value to the model future valag ¢hen add\ to the observed value at the
percentile being corrected (1). ¢) The CDF-tranef@CDF-t) method; starting at the point to be
corrected, go horizontally to the grey line (1)stically to the blue line (2), and horizontally to
the original value (3). d) Final results from albi&s correction methods (dotted/dashed green
lines), along with the PresRat method (solid pulipke) for comparison. Note that the X axis
uses a square root transformation and the Y axis as inverse error function (“probability
plot”) transformation.

Figure 2. a) Ensemble averaged across all 21 mottied mean difference between the
bias-corrected and the original GCM-predicted clean@070-2100 minus 1976-2005) in daily
maximum temperature (°C). b) RMS spread of thetiffices between the bias-corrected and
original GCM-predicted temperature changes actis21 GCMs. Values are shown for 2
months (rows) and 3 bias correction methods (cok)mn

Figure 3. As in Figure 2, but for precipitation,units of percentage points.

Figure 4. Correction factork, for the PresRat scheme that are necessary terpees
model-predicted changes (2070-2099 vs. 1976-200&)an precipitation, illustrated for four

months. Values are averaged across 21 GCMs. Wieigs @are within 5% of unity.
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Figure 5. Left column: proportion (%) of total vamice of daily maximum temperature
that falls in the frequency band whose period éaated in the panel title, from observations
over the period 1976-2005. Note that the color eavayies substantially by frequency band.
Middle column: the multi-model mean error (%) foetsame quantity in the GCMs, relative to
the observations. Right column: the multi-model RIV($0).

Figure 6. As in Figure 5, but for daily precipitati

Figure 7. For daily maximum temperature (top pareatsl precipitation (lower panels):
the left column shows normalized spectra from olet@ns (red line), CCSM4 (blue line), and
CCSM4 after frequency-dependent bias correctioeegfgdots and line). Right column: Ratio of
CCSM4 spectral power to observations before (bhed nd after (green dots and line)
frequency-dependent bias correction. Values are/stad a hot, dry location in central Nevada
(39.5, —116.5), and a cool, wet location betweeatteand Portland (46.5, —122.5), as indicated
in the panel titles.

Figure 8. For daily maximum temperature (top romg arecipitation (bottom row), the
multi-model ensemble average log-RMSE in simulathregobserved distribution of variance
across frequency, both before the frequency-deperuias correction (left column) and after
(middle column). Right: histograms of how the fregay-dependent bias correction changes the
log-RMSE, taken over all models and all locations.

Figure 9. Histograms of how much the frequency-ddpeat bias correction alters the
daily temperature (left, °C) and precipitation frigwo panels). The precipitation results are
given both as the fraction change (%) and abschdé®ge (mm/day). Results are shown for all

the models across all points in the contermino& U.
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Figure 10. Analysis of runoff simulated by the \W@drological model with various
meteorological forcing fields. a) Error in simuldtepectral power of runoff (at a period of 30
yrs) when VIC is forced with temperature and priatpn fields from the CCSM4 GCM, where
error is defined as log10(power using GCM forciqgpwer using observed forcing). b) Same as
panel a, but using bias corrected (BC) GCM fordialgls. c) same as panel a, but using BC and
frequency dependent bias corrected (FDBC) fieli@aimain-averaged mean error as a function
of frequency; black line is for BC forcing field$ashed red line is for BC+FDBC forcing fields.

Figure 11. RMS error (% of climatological annualaneralue) in the annual cycle of
precipitation (smoothed with a 31-day boxcar fjlt@s simulated by the CCSM4 model, using
various bias correction approaches. a) Originaleh@ub bias correction). b) Simply monthly
BC. c) Single central day corrected based on stsief a sliding 31-day window. d) 91-day
window. e) Iterative BC with 91-, 181-, and 365-dayndows, but no preconditioning. f)

Iterative BC with preconditioning.

Figure 12. Scatterplot of sorted daily precipitati@lues, observed versus model with the
following bias correction applied: a) Original médata (no bias correction). b) Simple monthly
BC. c) Single central day corrected based on stsief a sliding 31-day window. d) 91-day
window. e) Iterative BC with 91-, 181-, and 365-de@yndows, but no preconditioning. f)

Iterative BC with preconditioning. The dashed rieé shows the best fit least-squares line based
on the 5 largest values. Model data are from th8/ @€ GCM at a point in the Sierra Nevada
(37.5 °N, —119.5 °W), over the period 1976-2005.

Figure 13. The slope (left column) and intercegghfrcolumn) of the best fit least-

squares line between the top 5 observed and mofie@8M4) extreme events for different bias

correction approaches as indicated in the pamhes tit
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Abbreviation
Accessl-0

Bcc-csml-1
Bnu-esm
CanESM 2
ccsm4
ECSM1-BGC
CNRM-CM5
CSIRO-Mk3.6.0

GFDL-CM3
GFDL-ESM 2G
GFDL-ESM2M
INMCM4

IPSL-CM5a-LR

IPSL-CM5a-MR

MIROC-ESM

MIROC-ESM-CHEM

Model sour ce/institution

Commonwealth Scientific and Industrial ResearchaBization
(CSIRO) and Bureau of Meteorology (BOM), Australia
Beijing Climate Center, China

Beijing Normal University, China

Canadian Centre for Climate Modelling and AnalySianada
National Center for Atmospheric Research, USA

National Center for Atmospheric Research, USA

Centre National de Recherches MeteorologiquescEran
QCCCE & Commonwealth Scientific and Industrial Resh
Organization, Australia

Geophysical Fluid Dynamics Laboratory, PrincetoSAU
Geophysical Fluid Dynamics Laboratory, Princeto8AU
Geophysical Fluid Dynamics Laboratory, Princeto8AU
Institute of Numerical Mathematics Russian Academn@ciences,
Russia

Institut Pierre-Simon Laplace, France

Institut Pierre-Simon Laplace, France

Japan Agency for Marine-Earth Science and Techiyolmagd
National Inst. For Environ. Studies, Japan

Japan Agency for Marine-Earth Science and Techiyolmagd
National Inst. For Environ. Studies, Japan

MIROC5 Atmosphere and Ocean Research Institute and Nsit.Har
Environ. Studies, Japan
MPI-ESM-LR Max Planck Institute for Meteorology, Germany
MPI-ESM-MR Max Planck Institute for Meteorology, Germany
MRI-CGCM3 Meteorological Rsearch Institute, Japan
NorESM 1-m Norwegian Climate Centre
802 Table 1. The GCMs used in this work and their oidgjing institutions.
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Figure 1. Cumulative distribution functions (CDIe$)synthetic daily precipitation data
schematically illustrating how each bias correctioethod constructs the model’s bias corrected
future CDF (green dotted/dashed lines). The sdlid,lgrey, and red lines are the same in all
panels and show the observed (1976-2005), modeiriual (1976-2005), and model future
(2070-2099) CDFs, respectively. The example pogimdp corrected is X=30 mm/day, which
falls at the 0.56 quantile in the model future ritisttion (dotted orange line). a) Quantile
mapping (QM): starting at the point to be correctgvertically to the grey line (1),
horizontally to the blue line (2), and verticaltythe original percentile (3). b) Equidistant CDF-
matching (EDCDFm): at the quantile of the pointriigecorrected, compute the offset from the
model historical value to the model future valag ¢then add\ to the observed value at the
percentile being corrected (1). c) The CDF-tramaf@CDF-t) method; starting at the point to be
corrected, go horizontally to the grey line (1)ttically to the blue line (2), and horizontally to
the original value (3). d) Final results from albi&s correction methods (dotted/dashed green
lines), along with the PresRat method (solid pulipke) for comparison. Note that the X axis
uses a square root transformation and the Y axis as inverse error function (“probability

plot”) transformation.
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Figure 2. a) Ensemble averaged across all 21 moitied mean difference between the
bias-corrected and the original GCM-predicted clean@070-2100 minus 1976-2005) in daily
maximum temperature (°C). b) RMS spread of the=tiffices between the bias-corrected and
original GCM-predicted temperature changes actos21 GCMs. Values are shown for 2

months (rows) and 3 bias correction methods (cok)mn
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Figure 3. As in Figure 2, but for precipitation,units of percentage points.
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Figure 4. Correction factor, for the PresRat scheme that are necessary terpees
model-predicted changes (2070-2099 vs. 1976-200&)ean precipitation, illustrated for four

months. Values are averaged across 21 GCMs. Wieits are within 5% of unity.
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Figure 5. Left column: proportion (%) of total vamice of daily maximum temperature

that falls in the frequency band whose period éaated in the panel title, from observations

over the period 1976-2005. Note that the color eavayies substantially by frequency band.

Middle column: the multi-model mean error (%) foetsame quantity in the GCMs, relative to

the observations. Right column: the multi-model RIV(0).
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Figure 6. As in Figure 5, but for daily precipitati
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Figure 7. For daily maximum temperature (top pareatsl precipitation (lower panels):
the left column shows normalized spectra from olet@ns (red line), CCSM4 (blue line), and
CCSM4 after frequency-dependent bias correctioeegfydots and line). Right column: Ratio of
CCSM4 spectral power to observations before (bhe bnd after (green dots and line)
frequency-dependent bias correction. Values aresslad a hot, dry location in central Nevada
(39.5, -116.5), and a cool, wet location betweeatteand Portland (46.5, —122.5), as indicated

in the panel titles.
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Figure 8. For daily maximum temperature (top rom @recipitation (bottom row), the
multi-model ensemble average log-RMSE in simulathregobserved distribution of variance
across frequency, both before the frequency-deperiiies correction (left column) and after
(middle column). Right: histograms of how the fregay-dependent bias correction changes the

log-RMSE, taken over all models and all locations.

/cirl/cmip5_regrid/get_rmse_all_models.R
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Figure 9. Histograms of how much the frequency-ddpat bias correction alters the

daily temperature (left, °C) and precipitation frigwo panels). The precipitation results are
given both as the fraction change (%) and abschdé®ge (mm/day). Results are shown for all

the models across all points in the conterminou& U.
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a) GCM power err @ 30 yrs b) BC power err @ 30 yrs
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867
868 Figure 10. Analysis of runoff simulated by the \iigdrological model with various

869 meteorological forcing fields. a) Error in simuldtgpectral power of runoff (at a period of 30
870 yrs) when VIC is forced with temperature and priatpn fields from the CCSM4 GCM, where
871 error is defined as log10(power using GCM forcimpyver using observed forcing). b) Same as
872 panel a, but using bias corrected (BC) GCM fordialgls. c) same as panel a, but using BC and
873 frequency dependent bias corrected (FDBC) fielfi®amain-averaged mean error as a function

874 of frequency; black line is for BC forcing fieldsashed red line is for BC+FDBC forcing fields.
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a) Orig model b) Monthly BC
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c) Sliding day/31 day window d) 91-day window
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876 Figure 11. RMS error (% of climatological annualaneralue) in the annual cycle of

877 precipitation (smoothed with a 31-day boxcar fjltes simulated by the CCSM4 model, using
878 various bias correction approaches. a) Originaleh@ub bias correction). b) Simply monthly
879 BC. c¢) Single central day corrected based on statief a sliding 31-day window. d) 91-day
880 window. e) Iterative BC with 91-, 181-, and 365-d@ipdows, but no preconditioning. f)

881 Iterative BC with preconditioning.
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a) Orig model b) Monthly BC
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883 Figure 12. Scatterplot of sorted daily precipitati@lues, observed versus model with the

884 following bias correction applied: a) Original médata (no bias correction). b) Simple monthly
885 BC. c¢) Single central day corrected based on statisf a sliding 31-day window. d) 91-day

886 window. e) Iterative BC with 91-, 181-, and 365-d@yndows, but no preconditioning. f)

887 Iterative BC with preconditioning. The dashed rieé shows the best fit least-squares line based
888 onthe 5 largest values. Model data are from th&8@L GCM at a point in the Sierra Nevada
889 (37.5°N, —-119.5 °W), over the period 1976-2005.
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a) Orig mod, slope b) Orig mod, intercept
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c) Monthly BC, slope d) Monthly BC, intercept
50°Nf 50°N}
Lﬁ' ‘3‘..r‘ J'-4"‘
40°N} 40°N} .-!:':.‘ Qﬁ “ilﬁ

‘ -
-!-J! _-,pg,p
30°N}
125°W 110°W 95°W 80°W 65°W  125°W 110°W 95 W 30 W 65°W

o m— I I I I | — | R I I — — — g
012502 05 067 09 11 15 2 5 8 -18-14-10 -6 -2 2 6 10 14 18
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g) 91 day window, slope h) 91 day window, intercept
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i) Iterative w/precond, slope j) lterative w/precond, intercept
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891 Figure 13. The slope (left column) and intercejghfrcolumn) of the best fit least-

892 squares line between the top 5 observed and mo(le@8M4) extreme events for different bias

893 correction approaches as indicated in the pamestit
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