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Abstract

Sixteen global general circulation models were usatkvelop probabilistic projections of
temperature (T) and precipitation (P) change oaif@nia by the 2060s. The global models were
downscaled with two statistical techniques andehrested dynamical regional climate models, althoug
not all global models were downscaled with all téghes. The focus is on changes in daily distrindi
of T and P, which are important for a range of eggpilons in energy use, water management, and
agriculture. Similar to previous studies, the Tnelte change signal is more consistent geographiaad
across models than the P signal. The T changesesdddo agree more across downscaling techniques
than the P changes. Year-to-year natural intedimabte variability is roughly of similar magnitude the
projected T changes, but natural variability ioager of magnitude larger than the projected P gbsn
The distribution of warmest days in July tendsizréase uniformly, except along the North coashef
state, where the warmest days show less warmirtbelmonthly average, July temperatures shift enoug
that that the hottest July found in any simulatieer the historical period becomes a modestly dabl
in the future period. The distribution of warmeaysd in January is little changed at the mediaretwv,
but becomes notably warmer on the few warmest dbifse year. As a result, Januarys as cold as any
found in the historical period are still found lret2060s, but the median and maximum monthly aeerag
temperatures increase notably. Although the anRudlanges are small compared to interannual or
intermodel variability, the annual change is conggosf seasonally varying changes in storm intensity
and number of stormy days that are themselves fiangér, but tend to cancel in the annual mean.
Winters show modest wetter conditions in the Noftthe state due to a strong increase in stornméitie
coupled with a weak decrease in the number of stalays, while spring and autumn show drying due to
a strong decrease in the number of stormy daysledwyth a weak increase in storm intensity. The
dynamical downscaling techniques project increapiegipitation in the Southeastern part of theestat
which is influenced by the North American monsaodue to an increase in both the number of

precipitating days and the average P on those days.
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1. Introduction

California has a confluence of factors that makmiticularly vulnerable to anthropogenically-
induced climate change (e.g., Wilkinson et al. 20€&yhoe et al. 2004, Cayan et al. 2006, Dettinged
Culberson 2008). The long coastline is subjesetmlevel rise, which will affect erosion and salisv
intrusion into estuaries such as the sensitived®aento-San Joaquin river delta. Warming and
precipitation changes will directly impact cropsigests in the agricultural and wine-producingeagi
and affect regional water resources and floodthisugh changes in the snow line, snowpack, and
evapotranspiration. The California state governmetgnizes these potential vulnerabilities, and is
encouraging the use of climate projections in lterga planning so impacts can be minimized. Indeed,
anthropogenic effects can already be seen in thpdarature and hydrology of the region (Barnett.et a
2008, Pierce et al. 2008, Bonfils et al. 2008, Htjdat al. 2009, Das et al. 2009; cf. Maurer e@07,
who examined a smaller region).

Regionalized climate change scenarios can protieéasis for this long-term planning. Beyond
scenarios, however, the decision making commurgda climate projections to be expressed
probabilistically (e.g. Manning et al. 2009). Thisproach facilitates incorporating projections ingi-
based planning, and provides a framework to idgstifategies for adaptive resource management (e.qg.
Brekke et al., 2009). A probabilistic assessmemhj®rtant partly because different global climate
models produce different future climates givenghme forcing, and partly because natural climate
variability means even a set of identical Earthsilddorm a distribution of future climates.

The primary purpose of this work is to present piulistic projections of temperature (T) and
precipitation (P) change over California by the @@@Hydrological variables such as snowpack, runoff
and flooding are addressed using a surface hydoalognodel, and will be presented in a separaté&wor
The ultimate basis for the projections are glotiata@te model (GCM) simulations from the Coupled

Model Intercomparison Project, version 3 (CMIP3;éket al., 2007). Since the GCMs are not



independent (sometimes sharing, for example, cdioveor microphysics parameterizations), and do not
uniformly sample model uncertainties, the distiidmos shown here are not true estimates of the
probability of future climate changes. Insteadytpeesent best-guess estimates of future climaagd
given our current ability to understand and modielate as reflected in the CMIP3 archive.

Uncertainty in climate projections arises from thssurces (Hawkins and Sutton 2009):
unknown future emissions, climate model deficiescaénd natural climate variability. The presentgtu
includes the latter two sources evaluated in agivitistic framework. The projections may changéia
future as our understanding increases, but mamipahapplications of climate information have dpn
decision lead times that could use climate chanfggrnation now (Anderson et al, 2008). This work is
aimed at developing a framework and providing auttretate of the science climate change estimates f
those longer-term strategic and planning needs.

Current GCMs do not resolve such topographic featas the Sierra Nevada or California
coastal range, which affect regional and local aten Therefore, we downscale the global models to a
~12 km grid using three regional dynamic modelstmmistatistical methods. We used both statistical
and dynamical techniques because each has differengths and limitations. The secondary purpése o
this work is to compare the climate projectionsrfrine dynamical and statistical downscaling techesq
and address how they systematically differ.

Natural internal climate variability in California strongly influenced by the EI Nino/Southern
Oscillation (ENSO) and Pacific Decadal Oscillat{®DO) (Cayan, 1996). Although ENSOQO's time scale
of roughly 2-7 years means that its effects wiljibeo average out over the decadal time scale
considered here, there could be a net effect ifrdgpuency of ENSO events changes. There is clyrent
no consensus on whether this will happen (Yeh.&(4l9, Collins et al. 2010), and while GCM
simulations of ENSO have gotten better over thesyahey still have notable flaws (AchutaRao and
Sperber, 2006). The spectrum of the PDO is neady(e.g., Pierce 2001), so the longer the timesifale
interest, the more power the PDO has at that tialesés a result, prolonged periods of positive or
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negative PDO can (and likely will) add to the anpiagenic climate signal to give the overall climiate
California's future. There is also some evideneg émthropogenic forcing could influence the stdtthe
PDO (Meehl et al., 2009). We include effects olnaltinternal climate variability in our analysis.

There is a substantial body of literature examingpresent, and usually future, climate of the
western U.S. with some combination of single ortipld GCMs and statistical or dynamical
downscaling (e.g., Dickinson et al. 1989, Giorgaketl994, Leung and Ghan, 1999a, 1999b; Taklé,et a
1999; Pan et al, 2001; Kim, 2001 and 2005; Hayhaé. €2004; Brekke et al. 2004; Coquard et al.£200
Leung et al. 2004; Brekke et al. 2004; Maurer anffp2005; Snyder and Sloan 2005; Duffy et al. 2006
Maurer 2007; Vicuna et al. 2007; Liang et al. 2008in et al. 2010). Some common themes emerge
from these efforts. First, different GCMs produdffedent magnitudes of warming and a range of
precipitation changes. Second, regional climateatsoRCMSs) introduce another source of variation,
with different regional models yielding differentitcomes for the same driving GCM. Third, projected
temperature changes over California are consistpngitive, but precipitation changes can varyigms
across models. Fourth, even with the divergentipitaton projections, the effect on California’s
hydrology is substantial; snowpack declines anaffishifts to earlier in the water year, with eléga-
dependent effects due to the colder temperatutgiglar elevations. And fifth, when simulating
historical climate structure, most if not all modehulations exhibit biases, which are assumedso a
affect the projected climate as well.

Given this body of previous work in the Califormegion, it is perhaps surprising that major gaps
remain. Few of the studies approached the probtefmapilistically, which is useful for planning
purposes. Also, almost all the studies referenbeda@deal exclusively with monthly data. Only Leletg
al. 2004, Hayhoe et al. 2004, and Kim 2005 anatlyeefuture daily data. Daily information is needie
wide variety of applications, such as energy udee(e sequences of three or more days of hot
temperatures result in high air conditioner loadgyjculture (where daily minimum and maximum
temperatures can affect crops and pests), and wateagement (where a few days of intense
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precipitation can generate floods). Finally, althlo some of the studies referenced above use dgabhmi
downscaling and some use statistical, none usédamat compared the two (cf. Hay and Clark 2003, who
used both, but over the historical period only erdmined runoff rather than T and P). With the
availability of a downloadable archive of statiatlg downscaled data for the western U.S. (httddfg
dcp.uclinl.org/downscaled_cmip3_projections/dcpfiatee.html), it is worth characterizing how

statistical and dynamical downscaled results diffehis region. Similar issues have been addreissed
other regions; for example, Europe in the PRUDENCEHristensen et al., 2007) and ENSEMBLES
(Kjellstrom and Giorgi, 2010) projects, and the Wih the Climate Projections project

(http://ukclimateprojections.defra.gov.uk/).

2. Data and Methods

The work shown here builds on Miller et al. (2008ho examined the ability of the dynamic
regional climate models (RCMs) used here to sireuGlifornia’s historical climate when driven with
boundary conditions from the NCEP reanalysis lir{&mitsu et al. 2002). Details of the RCMs are given
in that work, as well as a comparison of the RCblishatology to observations. However, users of the
projections should understand that the RCMs pertoetter when driven by historical (reanalysis)
conditions than when driven by boundary conditifsam coupled climate models that have their own
biases and errors. This is one of the motivationdbias correcting the RCM output, as explained\wel

Our model runs can be organized by the downscatieiinod used: dynamical, statistical via bias
correction with spatial disaggregation (BCSD), tatistical via bias correction with constructed
analogues (BCCA). All approaches downscale to ancgmately a 1/8 x 1/&8° (~ 12 km) spatial
resolution. Table 1 lists the various models use@dach downscaling technique, and further detads
given in the next subsections. Not all GCMs weremkraled with all three techniques. This is partly
because of the computer time required for the dycalrdownscaling, and partly because the daily data

required for dynamical and BCCA downscaling was/@vailable for a few GCMs.



The steep computational resources required fodyhamical downscaling imposed constraints
on this work. First, only limited time periods warevered in the RCM runs: 1985-94 (the “historical
period”) and 2060-2069 (the “future period”). Altingh the statistical downscaling covered 1950-2099,
for consistency we concentrate on the 1985-199£2860-2069 periods for all downscaling techniques
and models. Second, only global models driven BYSRES A2 emissions scenario were dynamically
downscaled. The strategic choice was made to pnedee model runs using one emissions scenario over
fewer runs with multiple emissions scenarios. Wie tibat the 2060s is about the last decade where
globally averaged surface temperatures from theBA2 and A1B emissions scenarios do not show a
clear separation (IPCC 2007, Fig. SPM.5).

The 10-year spans are too short to examine natlimate variability from ENSO and the PDO
in any one model run. However, we partially makdarghis by using 4 to 16 models at a time
(depending on the downscaling technique). Natuxehbility is not synchronized across the modais, s
this samples different phases of the ENSO and Riizh means our trend estimates averaged across
models will be more robust to natural variabilidowever we cannot unambiguously determine whether
10-yr mean differences between models are duemtplgay different phases of the PDO or inter-model
spread in the mean climate projection. When wenedé the variability arising from natural causes
versus model spread, the sum of these two effectsriect but the split will be biased towards kéity
model spread more. l.e., some difference betwees that arises from sampling different phaseb®f t
PDO on a 10-yr timescale will be ascribed to magetad.

Results are presented as averages over the 1bm@aitlimate regions identified by Abatzoglou
et al. 2009. As shown there, these regions dotarljeb representing California's diverse mix dmelte

regimes than the standard U.S. climate divisions.



2.1 Dynamical downscaling

Three different dynamical RCMs are used for dowlisgahe GCM data: the weather research
forecast model (WRF), the regional spectral moR&N]), and the regional climate model, version 3

(RegCM3). The models will only be described bridfre; details are given in the references.

a) Regional Climate Model version 3 (RegCM3)

RegCM3 is a third-generation regional-scale clinmatelel derived from the National Center for
Atmospheric Research-Pennsylvania State (NCAR-RBW) mesoscale model (Pal et al. 2007).
RegCM3 has the same dynamical core as MM5, the Calliative transfer package, and the Biosphere-
Atmosphere Transfer Scheme (BATS) land surface in@iekinson et al., 1986; Giorgi et al., 2003).
RegCM has been validated against observations demeday climate in multiple domains, and does
well in simulating the spatial and temporal climégatures of California (Snyder et al., 2002, Belal.,
2004). For this study RegCM3 was configured wiih iHoltslag boundary layer scheme (Holtslag et al.,
1990), Grell cumulus scheme (Grell, 1993) with Enigsch and Chappell closure scheme (Fritsch and
Chappell, 1980), and the Zeng (1998) ocean fluripaterization. The model domain is centered over

California with a horizontal resolution of 10 kmcdah8 levels in the vertical.

b) Weather Research and Forecasting model (WRF)

We use a version of NCAR WRF version 3 coupledhéodommunity land surface model version
3.5 (CLM3.5; Oleson et al. 2004), referred to aRWCLM3” in Miller et al. 2009. The combination
has an advanced land surface scheme with subapidgentation for snow and vegetation, lateral
hydrologic flow capability, and the potential fame-evolving plant functional types. The WRF moidel
set up with the Kain-Fritsch convection parametgi@n for cumulus clouds (Kain and Fritsch 1998 t
Yonsei University (YSU) planetary boundary layeB(fp scheme (Hong and Pan 1996), and the Medium

Range Forecast Model turbulence closure schemddiMeid Yamada 1982). The microphysics package



used here is the WRF Single-Moment 3-class (WSMB&me (Hong et al. 2004), and the Rapid
Radiative Transfer Model (RRTM) based on Mlaweale{1997) is used for describing longwave
radiation transfer within the atmosphere and tostiéace, and the shortwave scheme developed by

Dudhia (1989).

c) Regional Spectral Model (RSM)

The version of the regional spectral model (RSMduisere is a development of the National
Centers for Environmental Prediction (NCEP) gladiactral model (GSM). The original regional code
has been modified to have greater flexibility amctéased efficiency (Kanamitsu et al., 2005). TB/R
uses a two-dimensional spectral decompositionjsimdplemented with so-called “spectral nudging”,

i.e., relaxation towards the low-frequency compase the global simulation over the regional damai
(Kanamaru and Kanamitsu 2007). The configurati@dugere is similar to that used to generate the 10-
km California Reanalysis Downscaling (CaRD10) deg(Kanamitsu and Kanamuru, 2007). A scale-
selective bias correction (SSBC) was used duriagehiuns (Kanamaru and Kanamitsu 2007). The Noah
land surface model with four soil layers was used cloud water and cloudiness are implemented as

prognostic variables (Tiedtke 1993; lacobellis &atnmerville 2000).

2.2 Statistical downscaling

We use two different statistical downscaling tegiess. Both operate on bias-corrected GCM

data; the bias correction (BC) procedure is deedrib section 2.3.

a) Bias Correction with Spatial Disaggregation (BCSD)

BCSD (Wood et al. 2002, 2004) generates daily-feslution (1/8x 1/8 in this
implementation) fields from monthly, bias-correct8@M data by randomly selecting an analogue month
from the historical observations such that thectetbmonth is the same month of the year as ttze dat
being downscaled. Monthly GCM anomalies are intiatigol onto the fine-scale grid, then applied, by
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offsetting (for temperature) or scaling (for pretfion), to the long term mean at the fine scalds
produces a fine scale monthly downscaled value.dHilg observed data for the analogue month on the
fine-scale grid is then offset (for temperature}caled (for precipitation) so that each grid setionthly
mean matches the monthly downscaled value. Siredlegure months from the historical period are used
to generate the daily sequences, we do not anBI@&D-generated distributions of daily future climat
variables. BCSD downscaling is used, for exampje;layhoe et al. (2004), Maurer (2007), and Vicuna

et al. (2007).

b) Bias Correction with Constructed Analogues (BCCA)

BCCA uses bias correction along with downscalindaify GCM fields via constructed
analogues (Hidalgo et al., 2008; Maurer et al. 208CCA is therefore the CANA method described by
Miller et al. (2009) along with a BC step appliedihe GCM temperature and precipitation fields. The
constructed analogue technique starts with a osfdaily historical observations on a 1#81/8’ grid.
This fine scale data is coarsened to the GCM gnid,the 30 best matches between the GCM fields for
that day and the coarsened observations are cothfdite 30 weights obtained from the matching

process are then applied to the fine scale data.

2.3 Bias correction

All T and P fields, whether downscaled statisticalt dynamically, underwent a bias correction
procedure. This is necessary because the profectis was on hydrological and other applicationsl, a
even current state-of-the-art GCMs/RCMs generaaad P fields with biases, often due to biasesén th
original global fields (e.g., Wood et al. 2004, Buét al. 2006, Liang et al. 2008). The outputtu t
GCMs was bias corrected before statistical dowiragalvhile the output of the dynamical RCMs was
bias corrected after being generated. Althoughlainthe BC procedures for the three data sets [BCS

BCCA, and the RCMs) differ in important details.
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BCSD starts with monthly GCM data, which we biagect using the quantile-mapping
technique described in Maurer (2007), based on Vébadl (2002, 2004). The mapping parameters are
determined for each month over 1950-99, then aphplighe future period. The assumption is that the
biases are unchanged in the future (cf. Liang.€1G08). As noted by Wood et al. (2004), a fullyg@r
period is preferable when bias-correcting monthG\NGoutput. For temperature, the linear trend from t
GCM output (interpolated to the fine scale gridswamoved at each point before the BC procedure was
applied, and then added back in afterwards. Theorefor this is explained by Wood et al. (2004): as
temperatures rise in the future they are found rfrecpiently outside the historic range, requiring
excessive extrapolation during the quantile mapgdhrgcipitation, with typically much greater
interannual variability than temperature, doesgesterally experience trends that exhibit this probl
during remapping, so the trend removal and replacénvas not applied. This procedure has the
advantage that the final result preserves ther@igiend in the global model, but the disadvantagée
the resulting trend is essentially that of thernpbdated global model.

The BCCA and RCM data are daily. We bias correetdaily data using a similar quantile
mapping technique, described in Maurer et al. (201Be historical period used for the monthly BCCA
downscaling was the 50 year span 1950-1999, byttbal 10-yr period 1984-1995 is available for the
RCM data. New results suggest that when bias dimgedaily (instead of monthly) data, 10 years is
adequate (Maurer et al., manuscript in preparation)

In contrast to BCSD, the global trend was not reedoand then reapplied for the BCCA and
RCM data, since the motivation for trend removal eeplacement described above is not as strong for
daily data. For example, since a large portiorhefttend in daily temperatures is due to more etu
warm temperatures (as opposed to relatively fewrcehot temperatures) (Dettinger et al., 2004) cWwhi
are represented in the historic period, the trengoval and replacement procedure is less nece3sasy.

also means that the trend in these data setxisdmiffer from the GCM trend. Since the basic
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assumption of downscaling is that it adds regi@ealinformation to the global signal, this is aiddde
characteristic.

However, the bias correction itself can modify ¢hebal trend. Table 2 illustrates this for July
average daily temperature at one grid point. Baasection modifies the variance of the GCM output,
since GCM simulations inevitably contain biasesaniance, skew, and higher moments. The historical
mapping is applied to future projections, so thiscpss changes the statistical properties of thelGC
projections. This table shows that when bias ctimedncreases the standard deviation of the mgnthl
data, then the low-frequency trend increases dswieén BC decreases the standard deviation, &mel tr
decreases. In essence, the procedure assumesdhsirethe amplitude of variability apply equatip
all timescales, from daily to the secular trend.

Statistical downscaling methods that remove thgelacale trend prior to bias correction and
then add it back in (BCSD in this study) will thueserve the GCM-simulated trend, while BCCA (as
used here) will be affected by the trend modifimatshown in Table 2. This can be seen in BCCA's
downscaled output (Figure 2). Whether the trendifivadion is appropriate given GCM errors in
simulating variability or if the raw simulated tetshould be preserved through the downscaling

procedure is currently an open question that i®beyhe scope of this work.

3. Results

The probabilistic framework requires that severatled runs be included to provide a distribution
of projected outcomes. How should data from midtidCMs, RCMs, and statistical downscaling
technigues be combined? Often all models are weightjually, an approach that was used in the last
IPCC assessment (IPCC, 2007). However, it hasbalen suggested that model quality should be
considered, with better models contributing moréhtoresult (e.g., Giorgi and Mearns 2002, 2008)s T
has led to a discussion of which approach is bédtgr, Pierce et al. 2009; Knutti et al. 2010;Ikjeom

and Giorgi 2010; Christensen et al. 2010). Forpurposes, we note that 1) Pierce et al. (2009)ddok
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specifically at the western U.S., and concludetlweaghting by model quality does not make a
difference to climate projections until after tihmé period considered here (the 2060s); 2) Giandi a
Mearns (2002) advocate weighting, but the actU&rdince this makes in the western U.S. is minimal
(their Figs. 4 and 5); 3) Brekke et al. (2008) fduittle sensitivity to projected regional precidibn and
temperature changes over northern California whi#limg GCMs based on historic skill in simulating
relevant climate features; 4) Christensen et &8l1(2, although considering a different region (@)
conclude that “we do not find compelling evidentdt weighting provides improved results, yet dida
another level of uncertainty to the generationrmsegnble-based climate projections.” Accordingly, we
weight the models equally, although we still expleystematic differences between downscaling
technigues.

Temperature changes are addressed in sectionr8clpipation changes in 3.2, and joint

temperature/precipitation changes in 3.3.

3.1 Temperature changes

Figure 1 shows an example “spaghetti plot” of ladl tuns considered here. The left panel shows
temperature projections for the Sacramento/Cextliéy region from all the model runs in deg-C
relative to the historical period (1985-1994), wftihe right panel shows the same for precipitation
(mm/day). Because of the bias correction, the naganspread of the distributions are roughly simiiar
the historical period. The runs are free to develiferences in the future period, however.

Figure 2 shows the temperature changes by the 2888saged across all models and
downscaling techniques. The yearly-averaged waritiitg 2a) is on the order of 2.4 C. The downscaled
data shows that the coastal regions experienceviassing, with a typical value of about 1.9 C.
Presumably this is due to the ocean’s moderatifhgeince, particularly given the coastal upwellirfg o

cool subsurface water along California's coashénsummer. Inland locations show more warming, with
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typical values approaching 2.6 C, which may haegaibtential to suppress coastal warming further via
enhanced sea breezes in some locations (Lebadske09).

Figures 2b through 2e shows that the mean warnasgtpronounced seasonal signature, with
the most warming (~3 C) in the summer (June-Julgust; Fig. 2d), and the least warming (< 2 C) im th
winter (Dec-Jan-Feb; Fig. 2b). Since energy ugedlifornia is dominated by summer cooling loads
rather than winter heating loads, this warmingeratsuggests that peak energy use could increstss fa
than would be expected if only the yearly averagesberature changes were taken into account.

Figure 3 shows how temperature percentiles in idterical era change in the future. For
example, the blue cross in panel a for the Sacrat@entral valley shows that the'5percentile
temperature in the historical period (x axis) Wwilcome the 17percentile value in the 2060s (y axis).
Interestingly, the curves in Fig. 3a start at thigin, which means that the coldest January monthly
average temperatures in the historical periodstilllbe experienced in the future. Climate change
evidently will not eliminate unusually cold winteronths in California, even judging coldness by
historical standards. (Relative to the evolving mdhe coldest months become much more dramatic in
the future, which might have implications for chinggcrops to those adapted to hotter conditionsis T
behavior is not isolated to only one GCM or dowtiagaechnique; of the 26 runs (Table 1), 12 have a
least one January in the 2060s that is about as @aotolder, than the coldest historical Januarthé
same model. Despite the existence of these colshdgsin the future, Fig. 3a shows that the median
monthly January temperature in the future will terwer than 8 or 9 out of 10 Januarys today, and the
warmest Januarys in the future are completelyhaffhistorical distribution. For instance, in thertiiern
California coast (top left of Fig. 3a), the warmé&ahuary found in the historical distributions ofa
model is only the 80percentile found in 2060s. In sum, the overaltyie for January is of occasional
(rare) months as cold as any today, but notablyngamedian temperatures, and with the warmest

months warmer than any yet experienced.
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The behavior of the warmest and coldest monthentes/hat different in July (Fig. 3b). The
curves still start nearly at the origin, but ingp@t showed that such a cold July only existedria of the
26 runs. On the other hand, the difference in taevest months is profound. Over most of the sthte,
warmest monthly average July found in the histddistribution of any model is only a 15-40th
percentile event in the future period. l.e., a Jhjt is exceptionally hot by current historicarslards
will become modestly cool in comparison to the meean.

The yearly warming simulated by the various dowlisgaechniques is shown in Fig. 4. Results
are shown only for the GFDL 2.1 global model, whigdis downscaled with all the techniques. This
isolates the effect of the downscaling method usiede the different downscaling techniques were
applied to different sets of models (Table 1). Terapure changes from the global model simulatien ar
shown in Fig. 4f for comparison. The downscalinthtgques generate similar values, and capture the
decrease in warming near the coast that is poeslglved in the global field. The main outlier isG&
(Fig. 4e), which has 10-25% less warming than therodownscaling methods or global model, for the

reasons outlined in Section 2.3 and Table 2.

a) Distributions of seasonal temperature change

Our main obijective is to describe climate change pmobabilistic fashion for use by long-term
planners. The exceedence probability of each yseasonally averaged temperature change in theefutu
period is shown in Fig. 5. The data in this fighes been re-sampled using the method described in
Dettinger (2005), which fleshes out the distribofiaising a principal component analysis-based re-
sampling technique applied to the variability ambtine model-mean climate change signal. l.e.,at is
Monte Carlo technique that gives smoother estinaftéise distribution by resampling the noise.

Figure 5 shows a distribution consisting of oneuggber year over the period 2060-69, so each
model run contributes 10 values. It is not eachefisd¢hange averaged over the future period, irckvhi

event each model run would contribute one value. Vidiues are presented this way to include thetsffe
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of natural internal climate variability. Our expamce has been that users interested climate data fo
impacts studies are not always aware of the impbrtde of natural climate variability. For thoseae
of it, including natural variability in the disthittions is useful; for those who are not, we belitnat
conveying the importance of natural variabilityessential for a proper understanding of climatengbha
The amplitude of natural variability will be quaatively compared to the mean model warming and
spread across the models in Figure 6, below.

Panels in Fig. 5 are arranged roughly geograplyitgliclimate region. The distributions are
similar for all the regions, although the projectegiming increases towards the Northeast, partiguila
summer. Over most of the domain, there is a 90%azhaf experiencing a warming of at least 1 C,and
10% chance the warming will reach 3-4 C (dependimghe season). Although summer (JJA) warming is
largest in most of the domain, across the soutteggions the differences between the seasons lessens

and autumn (Sep-Oct-Nov, SON) warming matchesiAenhrming.

b) Forced changes versus natural internal climate variability

The distributions in Fig. 5 have contributions frtimee sources: 1) the average warming across
models; 2) the difference in warming between madeis 3) natural internal climate variability. 3t i
useful to distinguish these components. For exanaplexpected climate shift that is large compéved
the natural variability could well have differedapning implications than one that is small comgddoe
the natural variability. Each simulation’s mean marg is estimated as the mean of the 10 yearlyegalu
in the future period minus the mean of the 10 \&lnehe historical period. Each simulation’s natur
internal climate variability is estimated from ttiéference between the 10 yearly values in theréutu
period and the mean of the 10 values in the fytereod. Only the future period is used for thisreate
in case natural variability is affected by the aaffogenic forcing.

Figure 6 shows these three components across tblaridte regions, using both yearly (Fig. 6a)

and seasonal (Figs. 6b-e) averages. Considerstghie yearly average (Fig. 6a), the mean model-
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estimated warming by the 2060s (green bars) ietatgan the 90% confidence interval of naturalrimaé
variability (blue bars) in all regions. In practi¢his means that the warming will be easily nathde in
the yearly average. The red lines show the 90%idemée interval in estimated warming across the
models. The model-to-model variability is small quared to the magnitude of the projected warming.
Even if we knew that one of the models used heepeafect and the rest wrong, it would make little
difference to the warming estimates.

The other seasons in Fig. 6 tend to show a lamy&ribution from natural variability, which is
understandable since fewer days are being averabeslis most pronounced in winter (DJF, Fig. 6b),
where the typical scale of year-to-year naturaitfiations in seasonally-averaged temperature ghigu
twice the expected shift in temperatures. The uatgy across models (red line) is a larger fratid
the mean warming as well. These tendencies arenizied in summer (JJA, Fig. 6d), where the
temperature shifts are as large compared to theataternal climate variability as seen in thanpe

average.

¢) Changes in daily temperature

Although the figures shown so far demonstrate #aly and seasonal temperature changes, the
actual values of daily temperatures are of intdmsapplications such as agriculture, health ametgy
demand. The BCSD downscaling technique uses onhthhodata from the models, generating daily
data by selecting matching months from the histriecord. Since this does not preserve the models'
sequence of daily values, only data pooled actes8CCA and dynamical downscaling techniques
(Table 1) have been used for daily analyses of éeatpre and precipitation.

Figure 7 shows the cumulative distribution functafrdaily maximum temperature in July for the
historical period (blue) and future period (redalves have been plotted with an error function
transformation on the Y axis, so a Gaussian didioh would form a straight line. The slope of sach

line is proportional to the variability, with stempslopes indicating less variability. All regiosisow a
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distinct shift to a higher likelihood of warmer amaximum temperatures at all probability levlke
shift is smallest, however, at the warmest tempeeatin the Northern and central coastal regions,
perhaps because of the moderating influence ofuoeklling ocean temperatures that are typicalgnse
in summer along California’'s coast. Similar curfggsdaily July minimum temperature display more
Gaussian behavior (straighter lines) and lack ¢deiced warming along the coast (not shown).

By contrast, January daily minimum temperatureg.(8) show more warming at the highest
percentile values and little change below the mrediaother words, the projected experience on the
ground in January will not be an increase in exky's minimum temperature so much as the appearance
of rare days with temperature several degrees wairaa experienced before. The Southern California
coast and mountains show a tendency towards aadeche the temperature of the very coldest days as
well. This same tendency is found more widely inutay daily maximum temperature (not shown).
While the slopes of the lines in Fig. 7 (July) téade the same or slightly steeper in the future,
indicating similar or slightly reduced daily varibty, the slopes of the lines in Fig. 8 (Jan) taade
flatter in the future, indicating greater daily adnility in projected January daily minimum (and
maximum, not shown) temperatures.

Three-day averages of maximum daily temperatuseimmer are of interest to the energy
industry, because people are more likely to useaiditioning by the third hot day. Figure 9 shdhs
distribution of the warmest 3-day average tempeeatuthe year. The shifts seen here are propatiipn
much greater than seen in Figs. 7 or 8. Also,lithalinland locations the divergence between the
historical and future distribution becomes morenpumced at the warmest temperatures. In these
locations the difference between the historical faare distributions is quite astonishing. For rexée,
in the San Joaquin valley, a 3-day run of 40 C amer temperatures is only a 1-in-100 occurrence in
the historical simulations, but is a 1-in-2 occage in the future simulations. Or, the simulatedb$-
average warmest temperature in the Anza-Borregoneg 46 C in the historical era, but 51 C in the
future era. Increases along the coast are a lassiag ~2 C, although even there the incidencg-déy
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maximum temperatures with a probability of < 0.61he historical era increases by a factor of 10eW
comparing to the changes in maximum 1-day avermgedrature in the year (not shown), the increases
in 3-day temperature are modestly larger at thk bigd of the distribution in the Northern and Caintr

Coastal regions, but otherwise similar to Fig. 9.

3.2 Precipitation changes

Figure 10 shows the mean precipitation change (@thé 2060s, averaged across all models and
downscaling techniques. The overall tendency isfemall amount of drying in the southern partef t
state (< 10%), and negligible changes in precipitain the North. The patterns by season are more
pronounced, with the northern part of the stateeggpcing wetter conditions in winter (Fig. 10batlare
nearly offset by drier conditions in the rest df ffear (Figs. 10c through 10e). The southern gahteo
state shows moderate fractional drying in fall, tefrand spring but a strong increase in summer
precipitation, which will be discussed more below.

California is climatologically dry in the summeq the large percentage increases found at that
time (Fig. 10d) represent small amounts. This @ight out in Fig. 11, where the size of the circles
indicates the climatological precipitation in eaeljion over the historical period (1985-1994), aadh
wedge shows what fraction of the total annual jpitation falls in that season. Although Fig. 10d
demonstrates that the percentage increases inrddipation are substantial, Fig. 11c shows that
summer precipitation makes up only a small fractibannual precipitation in all regions except the

Anza-Borrego (extreme Southeast corner of the)state

a) Forced changes versus natural internal climate variability

Figure 6 showed that projected temperature chamegesto be as large, or larger than, the 90%
confidence interval of natural internal variabilifiyhis is not true for precipitation (Fig. 12). Thieie bars
(90% confidence interval of natural variabilitynteto be an order of magnitude larger than the mean

model changes (green bars). At the same time piteag across the models (red lines) is typicaligda
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than the mean model change, except for the JJAgisignal across the northern part of the statg (Fi
12d). The spread of precipitation projections azmedels should be kept in mind when evaluating the
results described below. In practical terms, thésns that anthropogenic forcing will have only
incremental effects on yearly-averaged precipitativer most of the state. However even precipitatio
shifts small compared to the inter-seasonal or4atemual variability can be important for the laclegm
water balance of a region, especially where themgaipply has little room for reduction. For exaepl
California droughts can last 5-10 years, a longughaveraging period to reduce natural variability

sufficiently to expose small but systematic prdefjgon shifts.

b) The influence of downscaling technique

The effect of downscaling technique on precipitatiaust be interpreted cautiously, since not all
models were downscaled with all techniques. Thbajlmodels downscaled with a daily technique
(either dynamical or BCCA) happened to be drienttiee average global model by about 10 percentage
points in the annual average (Fig. 13a vs. Fig .1Bh& precipitation changes in the dynamical and
BCCA downscaled fields are shown in Fig. 13c. CommggFig. 13c to Fig. 13b shows that the tendency
of the BCCA and dynamical downscaling has beendkenthe simulation wetter in all regions. In the
monsoon-influenced region in the southeast of thie sthe wettening tendency of BCCA and dynamical
downscaling is so strong, an increase in precipitds projected even though the global models fhiaait
daily data showed more than average drying inrggibn.

The difference between downscaling techniques edpelter isolated by using a single global
model at a time. Figure 14 shows the yearly préatipn change (%) simulated by the different
downscaling techniques applied to the GFDL 2.1@6&M3 global model runs, along with the global
fields for comparison. The downscaling methodgalle similar results for temperature (Fig. 4).
However the agreement depends on the global modgtécipitation. The top row of Fig. 14 shows the

different downscaling techniques give similar resuthen applied to the GFDL 2.1 global model. Both
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statistical methods tend to be more faithful toghgjected changes of the driving GCM than the
dynamical models, as expected. However the bottawof Fig. 14 shows that different downscaling
methods give quite different results for CCSM3.(iFég. 149 vs. Fig. 14j), with the statistical imeds
again being most similar to the global GCM sigalr experience has been that applications experts
using climate projections tend to believe that dyitally downscaled results must be the best, ydten
Southeastern part of the state, Fig. 14i shows CEBMRF projects a 26% drying while CCSM3/RSM
projects 23% wetter conditions (Fig. 14j). How Hrese results to be understood?

The diversity of responses in CCSM3 can be undedsta large part, by considering the details
of precipitation changes in each season (Fig.Higures 15a and 15b show the statistical methods
applied to CCSM3, while Figs. 15¢ and 15d showdyreamical methods. Each panel shows the regions
in roughly geographical order, and each regionahset of 4 bars showing the climatological seasonal
precipitation (DJF, MAM, JJA, and SON, counting thas from left to right) and the change in
precipitation projected by the downscaling techai@eolored portion of the bars). Both dynamical
methods show 20-30% precipitation increases inakjnthile the statistical methods show increases of
less than 10%. Both statistical methods show MAM &®N drying of 20-30%, while the dynamical
methods show drying of <10%. In other words, tlatistical and dynamical downscaling technique are
showing the same patterns, but with different wiginghby season. Depending on how the oppositely-
signed tendencies are weighted, the yearly avatififgeence can be positive or negative.

The dynamically downscaled results have the aliiitglevelop trends different from those found
in the original global model. In theory this isdibecause the GCMs do not resolve the topography,
which affects precipitation. The problem is, howetkat the statistical and dynamical results sagge
different trends, and the dynamical trends do goeé@even given the same GCM forcing. What
determines the differences between a global moeietitand the corresponding dynamically downscaled
trend? Is it as simple as, say, WRF always prajgdummers that show more exaggerated drying than
found in the global model?
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This is addressed in Fig. 16, which shows a sele¢dJF and JJA) of seasonally downscaled
fields driven by the GFDL and CCSM3 global mod@&lse values plotted are the differences (percentage
points) between the dynamically downscaled pregdipit changes and the changes found in the original
global model. In other words, they are differenckdifferences, and show not the future precipitati
changes, but rather how dynamical downscalingsatter original global model trends. Although we are
limited by having only a small selection of resuftsme patterns are evident. For example, in O0F, a
three downscaled fields using the GFDL model Idakilar to each other (16a, 16e, 16i), and both
available dynamically downscaled fields using tl&S813 model look similar to each other (16c, 16q),
but the GFDL results do not look like the CCSMautes This suggests that in DJF, the effect of
dynamical downscaling is influenced primarily by thiobal model characteristics (e.g., the largdéesca
atmospheric circulation), and is less sensitivihéoparticular dynamical downscaling model used.

On the other hand, in summer, in the southerndfdhe state, RSM (16f, 16h) tends show much
wetter changes than the global models (either GBEDCCSM3), while WRF (16b, 16d) shows much
drier changes than the global models (either GFDC@SM3). The changes produced by RegCM3 lie in
between (16j). This indicates that summer predipitawhich presumably is less dominated by global
circulation and contains a larger regional influeris influenced more by the particular paramedtions

used by an individual dynamical downscaling mobehtby the global driving model.

¢) Changes in daily precipitation

Three-day accumulations of precipitation can beluseinderstand the potential for flooding
(Das et al. 2011), as it typically takes a few dayshe soil to saturate during storm. When exangjn
daily time scales we again use data pooled acmdgdlte BCCA and dynamical downscaling techniques,
since BCSD reconstructs daily time sequences fristorical analog months. This includes data from th

CCSM3, GFDL 2.1, PCM1, and CNRM CM3 global modédlaffle 1).
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The distributions of the maximum three-day accutimein a calendar year are shown in Fig.

17. Nearly all of California shows striking increasn maximum three-day accumulations, in many
instances generating values far outside the histiodistribution. Similar results were found in Kim
(2005), although that work considered snow/raitirmiions that we are not examining here. Along the
Northern coast, the historical distribution top$ au80 mm/day with a 0.01/year chance. In ther&ytu
that same value has a greater than 0.1/year chamdéhe distribution now extends up to 120 mm/day.
At the same time, the low-precipitation end of tietribution is extended as well. In other wordig t
models project a tendency towards a wider spamdability along with the pronounced increase in

maximum 3-day accumulations.

d) Storm intensity versus frequency

We have seen that various changes in seasonapipa&ion are projected by the 2060s (albeit
with significant variability, both natural and assomodels). Do these arise from changes in thedrazy
of storms or their intensity?

To address this, we must first be able to idergtifgtormy” day (i.e., one with non-zero
precipitation). Since we are considering preciftativerages over regions, this is not straightéwdwy
(e.g., Chen and Knutson, 2008). The larger theaaneg area, the more likely it is that a storm \wél
encountered somewhere, so the incidence of zewipiisgion days will be lower than found at stason
within the region. This is related to the probldrattcoarse-resolution GCMs have with predictingrge
number of days with a small amount of drizzle (eSgyin et al. 2006, Dai 2006). We address this prabl
by defining a threshold > 0, above which we cons&deegion to be experiencing a day with
precipitation. Details on picking the thresholddanvalidation against observations, are given in
Appendix 1. Days with precipitation greater thaa threshold will be termed “rainy” days.

Figure 18 shows (for 4 representative regionstange in precipitation by month (top row),

change in the number of rainy days (middle row}i parcentiles of precipitation on rainy days (baito
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row). Again, only BCCA and dynamically downscaletalhave been used in this analysis, since those
are driven by daily global model data. (In a sévisjttest we recomputed this figure using BCCAajat
and found little difference except in summer in K@th American monsoon region, where BCCA does
not show the pronounced wettening.) Virtually thére state has a statistically significant drojsming
precipitation, particularly in April. In all regi@this is accompanied by a decrease in the nuniflveiny
days, although this decrease is not always stalhtisignificant. This pattern is repeated, althjiounore
weakly, in the autumn: most regions show a decrigageecipitation that is associated with a decedas
the number of rainy days.

Most of the regions, with the exception of the AB@rego, show a tendency towards increasing
95" percentile precipitation during some or all of ttwéd season months (Nov-Mar; bottom row of Fig.
18). This increase in heavy precipitation eventoants for the generally heavier winter precipiati
(e.g., Fig. 10b), since there are generally modesteases in the number of rainy days (Fig. 18),
particularly in December. In other words, winteeege precipitation increases despite fewer raatyg d
because precipitation events intensify.

Although this result is obtained with data pooledbas the BCCA and dynamical downscaling
technigues, the spread across models shown id Figiakes it perhaps unsurprising that the models do
not all agree on this result. Of the four modelgwiaily data (CCSM3, GFDL 2.1, PCM1, and CNRM
CM3), CCSMS3 shows the strongest increase in wintecipitation intensity. GFDL 2.1 and PCM1 show
weaker increases in intensity along the coast accedses in the far Northeast, while CNRM showsd mil
decreases in storm intensity (and winter dryin§-d6%, mostly due to fewer days with precipitation)
throughout the state.

The Anza-Borrego (Fig. 18) and Inland Empire regi¢mot shown), which are affected by the
North American monsoon, experience an increasermser (JJA) precipitation that is associated with
both an increase in the number of rainy days acidase in the median precipitation. Because of the
spread of responses across the models, these shanegeot statistically significant. CCSM3 and GFDL
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show these increases strongly, while CNRM showg anleak increase and PCM shows a slight
decrease.

The overall effect of changes in storm intensityfusquency in the pooled daily data is shown in
Fig. 19, by season and region. In contrast to F8gwhich showed each quantity in its native ufits,
number of rainy days and percentiles of precimitati Fig. 19 expresses the change in number of rain
days and storm intensity in terms of the impactd@nges have on total seasonal precipitation (Tm).
make this conversion, the problem is linearized$guming that each additional rainy day in theréutu
increases the total seasonal precipitation by asuatrequal to the average rainy-day precipitatiothe
historical period (likewise for the loss of a raitgy decreasing the seasonal precipitation). Tleetsfof
changes in storm intensity are then calculateti@sa¢tual change in seasonal precipitation mineis th
contribution due to the change in number of raiaysd As a result, each region's change in future
precipitation (leftmost bars in Fig. 19, colore@en for wet and brown for dry) is equal to the safim
changes arising from changes in the number of @ayg (middle bars in Fig. 19, yellow for less yain
days and grey for more) and storm intensity (righgtbars in Fig. 19, red for more intensity andelflor
less).

Several patterns can be seen in Fig. 19. Averagesdsthe available daily data, almost all
locations and seasons show an increase in stoemsity, except for winter in the south of the state
the same time, almost all locations and seasons atdecrease in the number of precipitating days,
except for the southeastern part of the staterimser. The way these two opposing tendencies combine
yields a complex pattern of seasonal precipitatizeinges. In the northern part of the state in ;e
increase in storm intensity is stronger than theebese in number of precipitating days, resultingn
overall mild (3-6%) increase in seasonal precigtatin spring (MAM) a mild increase in storm insity
coupled with a strong decrease in number of pretipg days yields a significant drying tendency (>
10%). This can also be seen in autumn (SON), ajfhdlie changes in storm intensity are small in this
season. Finally, the southeastern part of Caliégmoin the edge of the region affected by the North
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American monsoon, shows both a mild increaseamstntensity and strong increase in number of

precipitating days in summer (JJA), resulting igéa(> 100%) increases in that season's precipitati

3.3 Joint distributions of temperature and precipitation change

For planning purposes it can be useful to know trethe distributions of temperature and
precipitation change are related. For example,gperithe warmest projections are also the driegtir€i
20 shows two-dimensional distributions of tempema{x-axis) and precipitation (y-axis) changes in
winter, which generally experiences the largestesbéprecipitation in California. The data hasrbes
sampled as in Dettinger (2005), described abovefifdeno evidence that the temperature and
precipitation distributions are linked, either iimter (Fig. 20) or the other seasons (not showhi Most
notable feature of Fig. 20 is that the temperadlis&ibutions are well separated from zero, wHile t

precipitation distributions essentially straddle #ero line (cf. Fig. 6 vs. Fig. 12).

4. Summary and Conclusions

Our purpose has been to present probabilistic giojes of temperature (T) and precipitation (P)
changes in California by the 2060s. We have empbdsiaily distributions, since a number of impartan
applications in energy demand, water managemedtagriculture require daily information. Similarly,
we focused on probabilistic estimates and inclutkdral internal climate variability, because itigeful
for planners to understand the range of climatgeptions and how those compare to natural climate
fluctuations.

We downscaled data from 16 global models usingabaaation of two statistical techniques
(BCSD and BCCA) and three nested regional climaidets (WRF, RCM, and RegCM3), although not
all GCMs were downscaled with all techniques. Duedmputational constraints, we have dynamically
downscaled results for only a historical (1985-19@4d future (2060-2069) period, and one emissions

scenario, SRES A2. The 2060s is about the |lasidéeteat does not show a clear separation between th
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A2, B1, and A1B emissions scenarios, but includirguncertainty in how humans might respond to

climate change would certainly widen the futurentl & distributions.

As appropriate given our focus on applicationspraddel output was bias corrected. The GCM

data was bias corrected before being statisticlilynscaled, while the dynamically downscaled data w

bias corrected after it was produced. We find:

January-averaged temperatures as cold as any fotine historical period are still seen
in the 2060s, although rarer. However Januarys wathan any found in the historical
period are seen about 20% of the time. By contcadd, Julys (judging by historical
standards) all but disappear by the 2060s, anddtiest July average temperature found
in any simulation’s historical period becomes a sratkly cool event (15-4percentile)
by the 2060s.

Similar to previous studies (e.g., Leung et al.£@oquard et al. 2004, Hayhoe et al.
2004, Duffy et al. 2006) the projected warming isrenconsistent across models and
regions than the projected P change, which vamieggh by model. Also, the warming is
greater in the inland regions and in summer, withgreatest warming in the Northeast
of California in the summer.

The downscaled T projections tend to agree acrossstaling techniques, except for
BCCA, which shows smaller trends than the othédnrigpies or original GCM for
reasons related to the way the bias correction svork

Year-to-year variability in seasonally averaged alout twice as large as the mean
seasonal climate change warming in winter, and athalfithe mean warming in summer.
In either season, the model range in projected vwaris about half the mean warming
signal.

Distributions of July daily maximum T shift more lesss uniformly towards warmer

values, except along the Northern coast, wheremani values are little changed from
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today. In January, by contrast, the distributiomslidtle changed below the median, but
show a shift towards a greater incidence of a fartiqularly warm days.

Distributions of the warmest 3-day average T, whddkie air conditioner demand, show
approximately uniform shifts of +2 C across therdistion.

Averaged across all models and downscaling teclesiqueak annual mean drying is
found in the southern part of the state, and near B change in the northern part of the
state. The disagreement across models is largeeveswT he seasonal signal is more
complicated; winters tend to become wetter in thethy spring and autumn show strong
drying, and summer (when the actual values of Rjaite small) shows drying in the
north but wetter conditions in the south. Year-tadynatural variability is typically more
than an order of magnitude greater than these elsaagd the range of projections
across models includes zero, except in summerhansduthern part of the state in
spring. Because natural variability in precipitatie large compared to the anthropogenic
change, future work using time slices longer thent0-yr periods available here would
be valuable.

The different downscaling techniques agree leds Rithan they do with T. This is due
to the annual P change in most models being madé epmpeting effects, with winter
wettening and spring/autumn drying. Different madehd downscaling techniques end
up weighting these competing seasonal effectsrdiftéy, which can result in a positive
or negative change in the yearly average.

The dynamical downscaling techniques show largaeases in summer P in the region
affected by the North American monsoon than fourttl the statistical downscaling
technigues. Regional dynamical models are ablendify monsoon effects that are only
coarsely represented by the GCM’s, but statistioanscaling has no way to sharpen

these features. In general, the winter P respaeses more sensitive to which GCM
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was used, while the summer P response seems nmigvaeto which RCM was used. A
similar finding was reported in Pan et al. (2001).

There is a substantial increase in 3-day maximwuipitation, with peak values
increasing 10-50%, in agreement with Kim (2005)e Tircreases are largest in the
northern part of the state, where values that balyea 0.01 probability of occurrence in
the historical period become 10 times more likghthe 2060s.

Changes in seasonal P are determined by a coropdtigtween generally increasing
storm intensity (mean P on days when P occurspandrally decreasing number of
stormy days (days when P occurs). Winter P inceeimsthe northern part of the state are
driven by significant increases in storm intengitth only mild decreases in the number
of stormy days, while the spring and autumn dryirg driven by large decreases in
stormy days with only mild increases in storm isign The region influenced by the
North American monsoon (the extreme southeasteo$thite) shows an increase in both

stormy days and storm intensity in summer.

We believe these results will help planners bettiapt to the changes in climate that are in store

for the western U.S.
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Appendix 1. Calculating “zero-precipitation” days.

We want to compute how the number of days withipittion (P) changes in the future and the
meanP on those days. However, GCM grid cell precipitatialues are area averages, which do not
correspond to station measurements (Chen and Kkm2668). This can be seen in the way current
GCMs over-predict the number of days with a smalbant of precipitation (e.g., Sun et al. 2006, Dai
2006; cf. Wehner et al. 2010). These problemsega i the downscald®idata as well, albeit to a lesser
extent. For these reasons, defining a model’'s “peegipitation day” as one with precipitation ideatly
equal to zero gives discrepancies with station-dbastimates of the frequency of zero-precipitatags.

Earlier studies have addressed this problem byidefia threshold > 0, below which a model is
considered to have zero precipitation. For exanysang et al. (2004) used 0.01 mm/day, Kim (2005)
used 0.5 mm/day, and Caldwell et al. (2009) usgdrfn/day. Given this range, which is influenced by
the size of the model gridcell and the region’sjpi¢éation characteristics, how can we sensiblyoseoa
zero-precipitation threshold for the model values?

Our model data is bias-corrected, which means tgeirmearP values are uniform and equal to

observed, so we can sensibly pool all the histbrieadel P data without being concerned that different

models will contribute wildly different mean valuést sz"dbe the zero-precipitation threshold we seek
for the pooled model data, ang"bS be the zero-precipitation threshold for the obatons (which is

always zero). Letf, (P) be the fraction of days with <= P, for either the model or observations. We

chooseP™ such that< f **(P®*) > = f ™9(< P™" >)  where the angle brackets (< >) indicate area

averaging over one of our California analysis ragidn other words, we choose a zero-precipitation
threshold that makes the fraction of zero-predipitadays calculated from the pooled model data’s

precipitation averaged over the region equal tadig@nally-averaged fraction of zero-precipitataays
calculated from the observations. In this calcalative use the precipitation values from Hamlet and

Lettenmier (2005) as our observations, which asetdaan NOAA's co-operative observational network,
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but have gridded values across our entire domath,high altitude values interpolated by takingint
account the effects of elevation.

Figure 21 illustrates the process of choosi?j@"d. Figures 21a and 21b show the region-
averaged climatological percent of zero-precigitatiays from the Hamlet and Lettenmier (2005)
observations for December and July, respectivetg dorthwest coastal region has the lowest number o
zero-precipitation days in December, while the ABoarego region has the highest. In July, at 18886
of the days have zero precipitation in every region

Figure 21c shows how the climatological numberesbzprecipitation days in the pooled model

data varies withP, (black curve) in one particular month and regi8adramento and the Central Valley

in December). As expected, the fraction of zer@ipitation days increases Bgincreases. About 25%
of days have zero precipitation when using thestinokl sz°d= 0, compared to 60% of the days in the

observations (red line in Fig. 21c). Whaj“"d: 0.25 mm/day (blue line in Fig. 21c¢), the numbiezero

precipitation days in the pooled model data equmsfound in the observations. This is referredddahe
“best-match cutoff”.

Figure 21d shows the best-match cutoff for allsagiand months. Two outlier regions can be
seen: the Sierra Nevada (red), and the Anza-Bol(tdge). The best-match cutoff is influenced byrsuc
factors as the size of the region, and the mearspaiial coherence of precipitation in the regieor. the
outliers the mean precipitation clearly plays adacas the Sierra Nevada is one of the highest-
precipitation regions and the Anza-Borrego is thedst.

Although Fig. 21d shows the best-match cutoffsielaze 132 values, one for each of the 11
regions and 12 months. Using all 132 values is ¢exngnd raises the specter of over fitting. Various

options are possible, such as choosing valuesdigrmemonth, or some combination thereof. Based on
the pronounced seasonal cycle all regions undergalecided to choose two values Bf‘"d, one for the

dry summer months and one for the rest of the yegure 21e shows the data from 21d averaged across
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all regions each month. We use the regionally-ayetdest-match cutoff of 0.36 mm/day in June-July-
August (JJA; red line in Fig. 21e), and 0.71 mm/ohethe rest of the year (blue lines in Fig. 21e).

How well the behavior of the full 132 values ismeguced by using just these two values is
shown in Fig. 21f, a scatterplot of the observémhalological percent of zero-precipitation daysdach
month and region (x axis) vs. the model value caembusing just the two cutoff values (y axis). The
regression line (blue) ha& = 0.92, so we consider this a satisfactory andighily reasonable solution
to the problem of computing the number of “zeroejpitation” days in the models.

As a sensitivity test of our results to the setattf the cutoff values, we repeated the analysis
shown in the main text (Figs. 18 and 19) with thiédet of 132 values. The differences were minor,
which gives us confidence that this selection isumaluly affecting our conclusions. We note that th
spread across models in the quantities shown inlBigends to be large in comparison to the errors

shown in Fig. 21f.
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Table 1

GCM Institution BCSD BCCA WRF RSM RegCM3
BCCR BCM 2.0 Bjerknes Centre Clim. Res., Y
Bergen, Norway
CCCMA Canadian Centre, Y
CGCM3.1 Victoria, B.C., Canada
CNRM CM3 Meteo-France, Toulouse, France Y Y
CSIRO MK3.0 CSIRO Atmos. Res., Melbourne, Y
Australia
GFDL CM2.0 Geophys. Fluid Dyn. Lab, Y
Princeton, NJ, USA
GFDL CM2.1 Geophys. Fluid Dyn. Lab, Y Y Y Y Y
Princeton, NJ, USA
GISSe_r NASA/Goddard Inst. Space Y
Studies, N.Y., USA
INMCM 3.0 Inst. Num. Mathematics, Moscow, Y
Russia
IPSL CM4 Inst. Pierre Simon Laplace, Paris, Y
France
MIROC 3.2 Center Climate Sys. Res., Tokyo, Y
medres Japan
MIUB ECHO-G Meteor. Inst. U. Bonn, Bonn, Y
Germany
MPI-ECHAM5  Max Planck Inst. Meteor., Y
Hamburg, Germany
MRI Meteor. Res. Inst., Tsukuba, Y
CGCM2.3.2 Ibaraki, Japan
NCAR CCSM3 Nat. Center Atmos. Res., Boulder, Y Y Y Y
CO, USA
NCAR PCM1 Nat. Center Atmos. Res., Boulder, Y Y
CO, USA
UKMO UK Met Office, Exeter, Devon, UK Y
HadCM3

Table 1. The global general circulation models (&FMsed in this project, their originating
institution, and the downscaling method(s) applBdSD: bias correction with spatial disaggregation;
BCCA: bias correction with constructed analogue®PRAMweather research forecast model; RSM:

regional spectral model; RegCM3: Regional climatelet version 3.

43



Table 2

Statistic NCAR

CCSM3 CNRM CM3 NCARPCM1 GFDL CM21
o prebias correction 0.84 0.66 0.49 0.73
o post bias correction 0.67 0.85 0.50 0.60
AT prebias correction 2.7 1.7 1.3 2.3
AT post bias correction 2.2 2.3 1.3 1.9

Table 2. An example of the effect of bias corrattim the standard deviation) (of average daily

July temperature (for a future period of 2040-20@&9}he projected changes in temperatiie petween

the future period and a historic baseline of 19909for a single grid point located at latitude 39,

longitude -121, over northern California.
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Figure 1. Left: temperature projections for ther8atento/Central Valley region from all the modeisu

considered here, in deg-C relative to the histbpeaiod (1985-1994). Right: same, for precipitatio

mm/day.

45



a) ALL yearly (C) b) ALL DJF (C) c) ALL MAM (C)

az2f
st
38l AN
“1 \..\
il L N
26
y % e
34t B ‘3 }
217726
N = N L , L N o . L . L
—124 -120 -116 —124 -120 -116 -124 -120 -116
| —— | | i ——— | | ———
1 15 2 25 3 35 1 15 2 25 3 35 1 15 2 25 3 35
2060s change, deg C 2060s change, deg C 2060s change, deg C
d) ALL JJA (C) e) ALL SON (C) f) Regions
azf — 42f ]
NorCal NorCal Northeast
40_1_ 4U_coaa:; central | Cal
Canlraf. 3@::!(:9!11 Sierra
381 38 coast valley ‘Nevada
36 36 San Joag. Inland
v_gllw empire ,
i § i i SoCal 'SoCal Anzal
coast mins Borrego
s2r . L . L | 32, L . . L L .
-124 -120 -116 -124 -120 -116 -126 —122 -118 -114
= T | I ——
1 1.5 2 25 3 35 1 1.5 2 25 3 35
2060s change, deg C 2060s change, deg C
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plot_change_monthly_prob_maps.R.01.gif

47



a) GFDL/BCSD yearly (C) b) GFDL/WRF yearly (C) ¢) GFDL/RSM yearly (C)
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Figure 4. Yearly temperature change (C) (2060-206fus 1985-1994) from each downscaling technique
applied to the GFDL 2.1 global model. The yearmperature change from the global model is shown in

panel f, for comparison.
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Figure 7. Cumulative distribution functions of Julgily maximum temperature across the regions
(plotted roughly geographically). The Y axis shdivs probability (zero to one) of experiencing the

indicated temperature or lower on any particularidaJuly. Results from the historical run are lneh

the future run is in red.
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Figure 8. As Figure 7, but for January daily minimtemperatures.
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Figure 9. Cumulative distribution functions of thighest 3-day average temperature in the yearYThe
axis shows the probability (zero to one) of havimgwarmest 3 days in a year be the indicated
temperature or lower. Results from the historical are in blue; the future run is in red. Paneds ar

plotted roughly geographically.
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Figure 11. Changes in precipitation, mean in theréu period (2060-69) compared to mean over the
historical period (1985-94), averaged across atl@sand downscaling techniques. The area of each
circle is proportional to the amount of yearly pp&ation in that region in the historical periothe size

of each pie wedge indicates the fraction of thaltgearly precipitation that falls in that seasbhe color

of each pie wedge indicates the precipitation chdpg) experienced in that region and season (same a

Fig. 8).

plot_precip_dels_pie_slices_allmods.R.gif

55
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Figure 12. A comparison of the contribution of matunternal climate variability and model uncentgi

to yearly and seasonally averaged precipitatiomgbs. Blue bars show the 90% confidence interval of
natural internal climate variability in seasonallyeraged precipitation (mm/day) estimated acrdss al
models, for the period 2060-69. Green bars showrtb@n model precipitation change projected in the
period 2060-69. The red line shows the 90% confidenterval in the projected precipitation change

across models. Note that each inset plot has ereliff scale for the Y axis.
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a) All models, yearly (%)

b) Daily models (global) (%)

c) Daily models (d/scaled) (%)
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Figure 13. Yearly precipitation change (%, 2060266mpared to 1985-1994) for all the global models
(panel a), the global models with daily data avd#igpanel b), and the models with daily data adé

after downscaling with the BCCA or dynamical tecjud@s (panel c).
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a) GFDL/BCSD b) GFDL/BCCA c) GFDL/WRF d) GFDL/RSM e) GFDL/RegCM3 f) GFDL/GLOBAL
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Figure 14. Yearly precipitation change (%, 2060266mpared to 1985-1994) from each downscaling
technigue applied to the GFDL 2.1 (top row) and ®3%bottom row) global models. The yearly

precipitation changes from the global models amewshin panels f and k, for comparison.
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a) CCSM3/BCSD precip (%)

b) CCSM3/BCCA precip (%)
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Figure 15. Changes in precipitation for the difféardownscaling methods applied to the CCSM3 global
model. In each panel a-d, the subpanels show #wpitation changes by region, arranged roughly
geographically. The bars show each region's sebgmwpitation (mm) in DJF, MAM, JJA, and SON
(left to right) in the future and historical persdhe difference between the future and historical
precipitation is colored, with the color determir®dthe percentage change using the same scalg.as F

10 (yellows/oranges show drying, blue/green shottening). Note that every set of bars has a differe
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Figure 16. Difference (percentage points) betwberchange in seasonal precipitation projected &y th
dynamically downscaled simulations and the changed in the original global model (GFDL 2.1 or

CCSMS, as labeled). Only winter (DJF) and summéh)Jields are shown.
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Figure 17. Cumulative distribution functions (CDE$Xhe maximum 3-day mean precipitation in a
calendar year. Regions are plotted roughly geogeaff Y axis is probability (0-1) of experiencirige

indicated average 3-day precipitation rate (mm/dary)ower.
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Figure 18. Precipitation changes due to storm gitgns. frequency in 4 regions. Top row: Annuatley
of monthly precipitation (mm/day), for the histaidblue) and future (red) eras. The change inlyear
precipitation (%) is in the title. At each monthh@x is drawn between the historical and futureies]

the box is shaded green if the future value isevetind brown if it is drier. The box has a heautlioe if
the difference is statistically significant at ®&6 level, a normal outline if significant at th@?® level,
and a light grey outline if not statistically si§oant. Black dots show individual model values dillie

row: Change in number of days with precipitatioraifly days"); yellow boxes show a decrease in rainy
days, grey boxes show an increase. Bottom row:5DHésolid line) and 98 (dashed line) percentiles of
precipitation, calculated only on days when prdatmn occurred, for the historical (blue) and fetu

(red) eras. The Y axis uses a square root transfiwmto better cover the wide range of values.
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Figure 19. Apportioning the seasonal precipitatibange in each region to changes in storm frequency
and intensity. In each set of three bars, thenhefst (marked "P") shows the change in precipitation
during that season (cm). (For comparison, theifsaat change in seasonal precipitation is showheat
bottom of each subpanel, in percent.) This baolgred green for positive (wetter future) changes]
brown for negative (drier future) changes. The dadwhr ( "Z") shows the change in seasonal
precipitation (cm) that arises due to the changauimber of zero-precipitation days. Yellow indicassn
increase in zero-precipitation days, and grey etgis a decrease. The rightmost bar (marked "I'\Wsho

the change in seasonal precipitation (cm) thaeariisom the change in storm intensity on days with
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precipitation. Red shows an increasing intensitye lshows decreasing intensity. Note that the ¥ axi

varies by region, but for each region is the saoness all seasons.

plot_change_freq_intensity_v4.R.gif
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Figure 20. Joint distributions of temperature cleafdegrees C, x axis) and precipitation (mm/dagxig)

in DJF. The outer heavy black line encloses 95%@fdata; the inner heavy black line encloses 50%.
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Figure 21. a) Observed climatological percent gfsdaith zero precipitation, December. b) Same, for

July. c) Black curve shows the percent of zeroipittion days calculated from the model, usingadat

from December in the Sacramento/Central valleyoregas a function of the precipitation cutoff

(mm/day) used. Red line shows observed climatodgiomber of zero precipitation days, and blue line

shows the best-match cutoff that, when appliethéomtodel precipitation, results in the model value

equaling the observed value. d) The best-matcHfdaroprecipitation (mm/day) for all 11 regionsns)
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and all months. The two outlier regions are ther&8iblevada (red) and Anza-Borrego (blue). e) The-be
match cutoff value averaged across all regions gawith. The blue line shows the wet season cutoff
value selected for this work (0.71 mm/day), andrétkline shows the same for June, July, and August
(JJA; 0.36 mm/day). f) The climatological observennber of zero-precipitation days for each month vs

the same value from the model, computed using #teand JJA values shown in panel e).
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