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ABSTRACT: A new set of CMIP6 data downscaled using the localized constructed analogs (LOCA) statistical method
has been produced, covering central Mexico through southern Canada at 6-km resolution. Output from 27 CMIP6 Earth
system models is included, with up to 10 ensemble members per model and 3 SSPs (245, 370, and 585). Improvements from
the previous CMIP5 downscaled data result in higher daily precipitation extremes, which have significant societal and eco-
nomic implications. The improvements are accomplished by using a precipitation training dataset that better represents
daily extremes and by implementing an ensemble bias correction that allows a more realistic representation of extreme
high daily precipitation values in models with numerous ensemble members. Over southern Canada and the CONUS ex-
clusive of Arizona (AZ) and New Mexico (NM), seasonal increases in daily precipitation extremes are largest in winter
(;25% in SSP370). Over Mexico, AZ, and NM, seasonal increases are largest in autumn (;15%). Summer is the outlier
season, with low model agreement except in New England and little changes in 5-yr return values, but substantial increases
in the CONUS and Canada in the 500-yr return value. One-in-100-yr historical daily precipitation events become substan-
tially more frequent in the future, as often as once in 30–40 years in the southeastern United States and Pacific Northwest
by the end of the century under SSP 370. Impacts of the higher precipitation extremes in the LOCA version 2 downscaled
CMIP6 product relative to the LOCA downscaled CMIP5 product, even for similar anthropogenic emissions, may need to
be considered by end-users.

KEYWORDS: Extreme events; Precipitation; Downscaling; Climate models; General circulation models;
Regional models

1. Introduction

Extreme precipitation has serious societal and economic
impacts, potentially triggering floods that can cause property
damage or loss of life. For instance, between 2008 and 2021
the United States experienced 22 flooding events that each
caused over $1 billion in damage (adjusted for inflation;
NCEI 2022). Recognizing the potentially disastrous effects of
floods, it is common to build water management infrastruc-
ture that includes a goal of minimizing flooding, with designs
informed by historically observed precipitation and stream-
flow extremes (NRC 1982). However, this approach becomes
problematic in a world with a changing climate, where histori-
cal extremes may not indicate the full range of future events
(e.g., Milly et al. 2008; Arnell and Gosling 2016; Donat et al.
2016).

A tendency toward increasing precipitation extremes is
likely in a warming world, since the saturation vapor pressure
of water vapor increases with temperature, leading to greater
atmospheric burdens of water vapor to fuel precipitation
events (the so-called thermodynamic effect; e.g., Westra et al.
2014; Kröner et al. 2017; Norris et al. 2019; Harp and Horton
2022). This response can be regionally modulated by changes
in atmospheric circulation (the dynamic effect), which can
alter the trajectory of water vapor transport, the atmosphere’s
vertical stability, and moisture availability (e.g., Martinkova

and Kysely 2020). The poleward shift of storm tracks is one
example of anticipated atmospheric circulation change in
coming decades (e.g., Yin 2005). As another example, in the
western United States, atmospheric rivers (ARs) carry an
enormous water vapor flux from the Pacific Ocean onto land,
fueling extreme precipitation events that can generate flood-
ing with extensive damages that increase exponentially with
flood magnitude (Corringham et al. 2019). A string of ARs
caused the costly Oroville Dam spillway failure in 2017 (Vano
et al. 2019). Future changes in ARs, including their water va-
por burden, landfalling latitude, and orientation with respect
to topographical features will affect extreme precipitation in
the region (Gershunov et al. 2019; Tan et al. 2020; Michaelis
et al. 2022). A review of various hydroclimate changes due to
projected changes in atmospheric circulation is given in
Zappa (2019), including changes in the Mediterranean region
of Europe, the eastern North Pacific, and the southern part of
Chile. Other evaluations of projected atmospheric circulation
changes can be found for Europe (Ozturk et al. 2022), China
(Yang et al. 2021), the polar regions (Screen et al. 2018),
and New Zealand (Sturman and Quenol 2013), among other
locations.

Some of the best tools to examine future changes in precipi-
tation extremes are Earth system models (ESMs). The output
from coordinated experiments using the latest generation of
ESMs is collected in the Climate Model Intercomparison Pro-
ject version 6 (CMIP6) archive (Eyring et al. 2016). CMIP6
holds data from numerous ESMs constructed by researchers
across the globe, incorporating varied scenarios of futureCorresponding author: David Pierce, dpierce@ucsd.edu
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greenhouse gas emissions, anthropogenic aerosol emissions,
and land use changes (O’Neill et al. 2014, 2016; Riahi et al.
2017). Many previous studies have examined extreme precipi-
tation in the CMIP6 models. For example, Srivastava et al.
(2020) and Akinsanola et al. (2020) examined model skill rel-
ative to observations over the CONUS; Ge et al. (2021) over
Southeast Asia; Zhu et al. (2020), Xu et al. (2022), and Luo
et al. (2022) over China; Gupta et al. (2020) over India; Chen
et al. (2021) over the western North Pacific and East Asia;
Dike et al. (2022) over central Asia; Faye and Akinsanola
(2022) over West Africa; and Kim et al. (2020) over the entire
world. Many studies note that the CMIP6 models are some-
what more realistic than the CMIP5 models, a result that
Pierce et al. (2022), examining the upper Colorado River
basin, found to be due to improvements in the depiction of
atmospheric circulation while systematic biases remained lit-
tle changed from the CMIP5 models. Additionally, these stud-
ies generally noted that the multimodel ensemble average is
typically better than individual models, which has been shown
to arise from the way errors cancel across different models
(e.g., Pierce et al. 2009).

Although ESMs are a key source of information for under-
standing future changes in extreme precipitation, they have
two significant drawbacks when used to anticipate and miti-
gate impacts of climate change on a regional or local scale.
First, the coarse grid spacing of most ESMs is not sufficient to
fully resolve the influence of topography on precipitation in
mountainous regions. Although some CMIP6 ESMs have
50-km spatial resolution, most are on the order of 100 km
with some up to 250 km. At these resolutions the effect of
topography on precipitation is muted, since the topography it-
self is poorly represented. In addition, coarser resolution
models have a harder time capturing atmospheric processes
that drive precipitation extremes (e.g., Li et al. 2011; O’Brien
et al. 2016). Second, CMIP6 ESMs have biases in their output,
including in the depiction of extreme precipitation, that arise
from model errors. Some stakeholders require realistic, unbi-
ased time series of daily precipitation values for input to exist-
ing application or impact models. For these stakeholders,
ESM biases can render an existing application model unus-
able, especially if the application model has a nonlinear de-
pendency on the input variables. For example, land surface
models typically fall in this category, since runoff depends in a
nonlinear way on the magnitude and temporal characteristics
of the precipitation time series. Another example is utility-
scale electricity demand, which is a nonlinear function of air
temperature. For such users, removing biases in the ESM
data is a requirement for the application models to be useful.

The need for more finely resolved, unbiased climate projec-
tions is typically addressed by bias correcting and spatially
downscaling the original ESM data, although such techniques
cannot obviate inherent model deficiencies (e.g., Maraun et al.
2017). There are numerous approaches for accomplishing
this. For example, bias correction over the historical period
can use quantile mapping (QM; e.g., Panofsky and Brier 1968;
Thrasher et al. 2012; Maraun 2013), although QM is not
appropriate for bias correcting future climate projections
since it distorts future climate change in a nonphysical way

(Hagemann et al. 2011; Pierce et al. 2013b; Maurer and Pierce
2014). Approaches for bias correcting future climate projec-
tions include univariate methods such as cumulative distribu-
tion function transform (CDFt) (Michelangeli et al. 2009)
and equidistant cumulative distribution function matching
(EDCDFm) (Li et al. 2010); conditional multivaritate meth-
ods such as PresRat (Pierce et al. 2015), which was used in
localized constructed analog (LOCA) version 1, and fully
multivariate approaches such as Cannon (2018) and Guo et al.
(2019). Multivariate approaches try to preserve between-
variable relationships that are important to climate impacts,
such as the temperature when precipitation occurs, which
determines winter snow cover. Reviews of bias correction for
climate and hydrological applications are given in Teutschbein
and Seibert (2012) and Maraun (2016).

Spatial downscaling likewise encompasses a broad range of
techniques, including dynamical methods that employ numer-
ical models similar to weather prediction models and statisti-
cal approaches that use historically observed relationships
between weather phenomena at large and small scales to
translate coarse-resolution ESM fields into a more finely re-
solved representation (e.g., Wood et al. 2004; Fowler et al.
2007; Gudmundsson et al. 2012; Pierce et al. 2013b; Bukovsky
et al. 2015; Jacob et al. 2020). Dynamical downscaling may do
a better job describing climate in coming decades, when non-
stationarity has made historically observed relationships a
questionable guide for future climate changes. However, even
dynamical models employ parameterizations that are partly
developed from historical observations, and therefore may
contain implicit stationarity assumptions that misrepresent fu-
ture changes. Furthermore, dynamical downscaling output
typically still has biases that need to be corrected for end user
applications, which requires a statistical bias correction step
with its own stationarity assumptions. Some dynamically
downscaled products are still too coarse for climate adapta-
tion needs [e.g., NARCCAP (Mearns et al. 2009) provides
data at a resolution of 50 km] and therefore require further
downscaling and bias correction for some applications
(Ahmed et al. 2013). Additionally, dynamical downscaling is
computationally expensive, which limits the total number of
models, emissions scenarios, and ensemble members that can
be downscaled, which limits the range of conditions that can
be explored for end-users.

Statistical downscaling methods are more overt and funda-
mental in the stationarity assumptions included, which might
misrepresent future climate changes to some degree. How-
ever, they have a much lower computational cost, so many
more models, greenhouse gas emission scenarios, and ensem-
ble members can be downscaled with a given computational
budget. Since different ESMs project a wide variety of future
climate changes, having enough models to both encompass
the projected range and identify rare combinations of climate
extremes for infrastructure stress tests are important consider-
ations for many stakeholders.

Statistical downscaling encompasses a wide range of techni-
ques, such as regression analysis between large-scale climate
indices or patterns and a particular location (e.g., Dibike and
Coulibaly 2005; Chen et al. 2014), neural networks and other

J OURNAL OF HYDROMETEOROLOGY VOLUME 24952

Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 06/13/23 08:35 PM UTC



machine learning approaches (e.g., Sachindra et al. 2018;
Sharifi et al. 2019), and weather typing, which relates large-
scale circulatory regimes to weather at a point (e.g., Boé et al.
2007; Van Uytven et al. 2020). Besides the stationarity as-
sumption noted previously, statistical techniques require high-
quality observations, known as training data, at both the large
scale and at the locations to be downscaled to in order to de-
velop the statistical relationships used to estimate information
at the finer spatial resolution. This can be an important limita-
tion to statistical downscaling in some circumstances, such as
when trying to downscale variables that are not routinely ob-
served (e.g., hub-height wind speeds for wind turbine applica-
tions) or when a region has a low density of observing stations
(e.g., in Alaska). The results of statistical methods depend on
the training data used, and differences in training data can ac-
count for important differences between different statistically
downscaled datasets (e.g., Wang et al. 2020; Vano et al. 2020).
Some statistical methods use a different variable as predictor
than as the predictand (variable to be predicted). For exam-
ple, weather typing approaches might predict precipitation us-
ing atmospheric pressure and water vapor fields. LOCA
belongs to the class of methods that use the same variable for
the predictor and predictand, and is an analog day method,
where historical days that are similar to the model day being
downscaled are used as the basis of constructing the down-
scaled field. LOCA has produced good results downscaling
temperature, precipitation, humidity, and the heat index in
cross-validation tests and when compared to other similar sta-
tistical methods (Pierce et al. 2014, 2015; Pierce and Cayan
2016) and provided fundamental data for the Fourth National
Climate Assessment (Avery et al. 2018) and California’s
Fourth Climate Change Assessment (Pierce et al. 2018). More
details on LOCA’s approach are given in section 2.

In this work we investigate future precipitation extremes
generated by a new version of the LOCA (Pierce et al. 2014)
statistical downscaling method. The downscaled output covers
a domain from central Mexico through southern Canada at
6-km spatial resolution. The improved representation of daily
precipitation extremes is accomplished through two changes:
1) using an improved precipitation training dataset that itself
better represents daily extremes (Pierce et al. 2021); 2) adding
an ensemble version of bias correction to the process (de-
scribed below). The primary focus of this work is on point 2,
the ensemble bias correction for precipitation. Additionally,
the new version of the downscaled dataset, which we term
LOCA version 2, is produced using the latest CMIP6 models
rather than on CMIP5 models used in LOCA version 1. Our
goal is to document the projected changes in extreme precipi-
tation found in this new downscaled dataset for various time
horizons and emission scenarios.

The LOCA version 2 output includes daily temperature
minimum and maximum in addition to daily precipitation, but
we focus on the latter here since the main changes from
LOCA version 1 (CMIP5) are in the treatment of precipita-
tion. Section 2 covers the changes in precipitation training
data and the ensemble bias correction methodology and lists
the models and ensemble members that have been down-
scaled. Section 3 shows the results in terms of projected

changes in 5-, 50-, and 500-yr return values of daily precipita-
tion as a function of season, location, and SSP, focusing on
multimodel ensemble averages for brevity. A discussion and
some considerations for users of the data are given in section 4,
and conclusions in section 5.

2. Data and methods

a. LOCA statistical downscaling

Localized constructed analogs (Pierce et al. 2014) is a statistical
technique for downscaling climate model output to more finely re-
solved spatial scales. LOCA requires as input a coarse-resolution
ESM field to be downscaled and a fine-spatial-resolution set of
training data that is generally obtained from observations. LOCA
then produces a fine-spatial-resolution version of the original
ESM field.

Analog downscaling methods such as LOCA work by finding
a match between the ESM field being downscaled and the ob-
servations coarsened to the ESM grid. Conceptually, the best
matching observed day is termed the analog day, and the origi-
nal fine-spatial-resolution version of the analog day is the
downscaled result. Because of the exceedingly high degrees of
freedom for weather patterns, a single analog day rarely pro-
vides a satisfactory match to the ESM field being downscaled in
any but the smallest domains (Van den Dool 1994). Con-
structed analog methods therefore combine multiple matching
historical analog days into one overall “constructed” analog day
to produce the fine-resolution downscaled result. Traditionally
this construction is done via a weighted average of the best-
matching analog days over the entire domain (e.g., Van den
Dool 1994; Maurer et al. 2010; Abatzoglou and Brown 2012).
However, the weighted average approach leads to a reduction
in extremes for all variables and an increase in drizzle days
when downscaling precipitation (Pierce et al. 2014). Addition-
ally, this approach does not scale well with domain size, since a
sufficiently large domain (e.g., the CONUS) includes locations
separated by enough distance to have weather that is uncorre-
lated, making it harder to find observed days that happen to
match the model day in multiple unrelated locations.

To address these problems LOCA combines the analog
days spatially (Pierce et al. 2014), roughly analogous to assem-
bling a jigsaw puzzle. The analog day selection proceeds in
two steps. First, a pool of 30 best-matching analog days is cho-
sen on a larger regional synoptic scale. Second, the best single
matching analog day of the 30 is chosen from a smaller local
region around the grid cell being downscaled to. This multi-
scale matching approach avoids averaging multiple analog
days and so better preserves extremes, a key driver of climate
change impacts, and eliminates the problem of drizzle days.
Additionally, since analog days are only found for the limited
region that is positively correlated with the grid cell being
downscaled to, LOCA can handle domains that are so large
as to include locations where weather systems are indepen-
dent of each other. In principle one could downscale the en-
tire globe with LOCA given the necessary observationally
based training data.
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b. Precipitation training data

LOCA version 1 used the Livneh et al. (2015, hereafter
L15) extended North American data as the training data for
daily Tmin, Tmax, and precipitation. However, subsequent
comparison of L15 precipitation to station data showed an
overly weak representation of daily precipitation extremes
(e.g., Pierce et al. 2021; Risser et al. 2021). Pierce et al. (2021)
used the Variable Infiltration Capacity (VIC; Liang et al.
1994) land surface/hydrological model to show that the dimi-
nution in extreme daily precipitation found in L15 resulted in
about a 15% lower overall runoff averaged across the
CONUS on an annual time scale, an interesting example of
effects across time scales that arises from the nonlinear
response of surface runoff generation to precipitation (e.g.,
Liang et al. 1994). In brief, L15 split precipitation gauge read-
ings from non-midnight-observing stations across two days.
This process involves binning and temporal averaging of ob-
servations, which diminishes extremes, increases the number
of wet days, alters the distribution of wet-spell length, and de-
creases the average precipitation on wet days (Pierce et al.
2021). To correct this shortcoming, in LOCA2 we use the
6-km gridded daily precipitation dataset of Pierce et al. (2021)
as the training data, an updated version of L15 that more real-
istically preserves daily precipitation extremes and extends
the period of record through 2018.

c. Ensemble bias correction

All ESMs have systematic errors, known as biases, which
can be problematic for stakeholders who need unbiased data

to drive impact models. An example of biases in extreme daily
precipitation in the CMIP6 GCMs is given in Fig. 1, which
shows the probability density functions (PDFs) of best-fit gen-
eralized extreme value (GEV) distribution fits for extreme
daily precipitation at Seattle, Washington, over the historical
period (1950–2014). Different ensemble members of the same
model (multiple lines with the same color) produce different
estimates of the GEV due to sampling variability and natural
internal climate variability, such as fluctuations associated
with El Niño or the Pacific decadal oscillation. Some ESMs
underestimate extremes by 50%. For example, in Fig. 1 the
upper red dot shows the probability of having a 40 mm day21

event in Seattle from the observations and the lower red dot
shows the probability in NorCPM1, which is about half the
observed value. Other models overestimate the chance of ex-
treme events by 100% or more. In general, different ensemble
members from the same model cluster more closely together
than do different GCMs. The goal of our bias correction ap-
proach is to reduce systematic biases such as illustrated here
while retaining the original GCM’s daily weather variability
and projected climate change signal.

Many bias correction schemes are based on quantile map-
ping (QM), which replaces a model value at some percentile
with the observed value at that percentile. In its simplest
form, QM results in the bias corrected mean becoming equal
to the observed mean and model maximum value equal to the
observed maximum value. This may be reasonable for a single
model run, but it is problematic when applied to multiple en-
sembles from a single model. One issue is that bias correcting
all ensemble members so that they have the same mean

FIG. 1. Probability density functions (PDFs) of the best-fit generalized extreme value (GEV)
distributions of extreme daily precipitation (mm day21) at Seattle, WA, from a variety of
CMIP6 models, indicated by the different colors. Observations are shown by the thick black line.
The model legend shows, in parentheses, the number of ensemble members plotted for each
model. The red dots show, as an example, how NorCPM1 (dot–dashed light blue lines) has about
half the probability of experiencing a 40 mm day21 precipitation event as is observed.
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reduces the total ensemble’s natural variability (Chen et al.
2019; Vaittinada Ayar et al. 2021), which can cause apprecia-
ble variation even on multidecadal time scales (Deser et al.
2012).

Of more immediate concern is that having all the ensemble
members exhibit the same maximum value, which is equal to
the observed maximum value, underestimates expected ex-
tremes in a dataset where models have multiple ensemble
members. For example, several CMIP6 models have 10 or
more ensemble members. All else being equal, a model with
10 ensemble members would be likely to have larger extreme
values present than a model that only supplies one ensemble
member solely due to the larger sample size. Bias correcting
all ensemble members so they have identical maxima is not
physically realistic.

These general concepts are illustrated at selected cities
(Table 1; Fig. 2), chosen to sample a variety of regional cli-
mates across the CONUS, in Fig. 3. Although it is an imper-
fect analogy for reasons discussed below, shown are extreme

value plots for annual maximum daily precipitation over the
historical period from L15 and three multimodel statistically
downscaled products: LOCA version 1, multivariate adaptive
constructed analogs (MACA; Abatzoglou and Brown 2012),
and bias correction with spatial disaggregation (BCSD; Wood
et al. 2002; U.S. Bureau of Reclamation 2013). Both MACA
and BCSD use QM to bias correct data over the historical
period. MACA is similar to LOCA in some respects, such as
downscaling based on constructed analogs, the ability to
downscale variables jointly by finding analog days that match
more than one variable simultaneously, and taking explicit
consideration of how to bias correct projected future model
output. They differ in how the analog days are constructed,
with MACA constructing analog days over the entire domain
while LOCA uses a localized approach that chooses analogs
only over the regional synoptic scale that influences a point
being downscaled to. The bias correction of future projections
also differs in important ways, with MACA using an epoch ad-
justment that removes the climate trend before downscaling,

TABLE 1. The 16 stations used here, their station IDs, three letter codes, latitudes, longitudes, elevations (m), U.S. states, and names.

GHCN ID Code Lat (8) Lon (8) Elev (m) State Name

USW00024233 SEA 47.444 4 2122.313 9 112.8 WA SEATTLE TACOMA INTL AP
USC00240802 BIL 45.771 7 2108.481 1 944.0 MT BILLINGS WTP
USW00014914 FAR 46.925 3 296.811 1 274.3 ND FARGO HECTOR INTL AP
USW00014739 BOS 42.360 6 271.010 6 3.7 MA BOSTON LOGAN INTL AP
USW00024131 BOI 43.566 7 2116.240 6 857.7 ID BOISE AIR TERMINAL
USW00023062 DEN 39.763 3 2104.869 4 1611.2 CO DENVER-STAPLETON
USC00111577 CHI 41.737 2 287.777 5 189.0 IL CHICAGO MIDWAY AP 3SW
USW00013743 DCA 38.848 3 277.034 2 3.0 VA WASHINGTON REAGAN AP
USW00023234 SFO 37.658 1 2122.437 8 2.4 CA SAN FRANCISCO WSO AP
USW00023169 LAS 36.071 9 2115.163 3 649.5 NV LAS VEGAS MCCARRAN AP
USW00003947 MCI 39.297 2 294.730 6 306.3 MO KANSAS CITY INTL AP
USW00013874 ATL 33.630 0 284.441 7 307.8 GA ATLANTA HARTSFIELD INTL AP
USW00023188 SAN 32.733 6 2117.183 1 4.6 CA SAN DIEGO WSO AP
USW00023044 ELP 31.811 1 2106.375 8 1194.2 TX EL PASO INTL AP
USW00003927 DFW 32.897 8 297.018 9 170.7 TX DALLAS FT WORTH AP
USW00012839 MIA 25.790 6 280.316 4 8.8 FL MIAMI INTL AP

FIG. 2. Location of the 16 stations used in this work, along with the 3-letter city codes used here. See also Table 1.
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FIG. 3. (first column) An extreme value (reduced variate) plot showing annual block maximum of daily precipitation (red circles;
mm day21) from the L15 dataset. The return period (years) is shown in the inset axis. The red curve shows the best GEV fit, and the hori-
zontal dashed line is the all-time maximum observed value. Each row shows a different city, as indicated in the title. Columns show similar
results for all the models in three statistically downscaled multimodel datasets: (second column) LOCA version 1, (third column) MACA
(Abatzoglou and Brown 2012), and (fourth column) BCSD (REF). For the statistically downscaled products, the black curve shows the best
GEV fit for the model data while the red curve is the best GEV fit to the Livneh observations, repeated from the first column.
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while LOCA uses the PresRat technique (Pierce et al. 2015)
that preserves the model-predicted future change by quantile.
BCSD is less similar to MACA and LOCA as it is not a con-
structed analog technique and operates on monthly data,
choosing an observed historical month as the basis for the
downscaling. However, it uses QM bias correction, as do
MACA and LOCA, albeit implemented in monthly windows
rather than the iterative set of windows LOCA uses (Pierce
et al. 2015).

Caution is needed when interpreting Fig. 3; it is not a direct
illustration of the bias correction issues described above since
the datasets only downscaled one ensemble member from
each model and our discussion concerns models with multiple
ensemble members. Instead, results are shown across all mod-
els in the dataset, comprising 32, 18, and 25 GCMs for LOCA
v1, MACA, and BCSD, respectively. Nonetheless some key
concepts noted above can be seen. For example, in MACA all
the models have the same all-time maximum value, since QM
replaces the model’s maximum value with the observed maxi-
mum value. (The MACA maximum is not necessarily equal
to the L15 maximum shown in the figure because MACA
used a different observed training dataset than L15.) LOCA
version 1 does not have the same kind of hard ceiling across
models because the sampling technique used there attempted
to reduce this problem by sampling later parts of the historical
period together with the early part of the projection period
(see Pierce et al. 2015 for details), but the highest values fall
systematically below the best-fit GEV (black line) so the at-
tempt to preserve extremes this way was not completely suc-
cessful. BCSD, unlike LOCA and MACA, is a monthly
technique that chooses an analog month to produce daily val-
ues, but even so Fig. 3 shows that there is an influence of the
bias correction on the daily values that gives a tendency to-
ward a similar (although not identical) maximum value across
different models.

Bias correcting all ensemble members together rather than
bias correcting each ensemble member individually better
preserves variability and extremes across the ensemble mem-
bers (Chen et al. 2019) and avoids truncating all extremes to
the maximum observed value. Models with multiple ensemble
members have rarer extremes than are available from the lim-
ited observations, so for bias correction purposes we fit a
GEV distribution to the observations and use the GEV esti-
mate when bias correcting model points that fall off the end
of the observed distribution (as was done in, e.g., Wood et al.
2004). We fit the GEV using block maxima and the method of
L-moments (Hosking 1990), chosen because it is computa-
tionally fast and performs well with limited data (Hosking
1990).

The LOCA version 2 implementation of ensemble QM bias
correction over the historical period is illustrated via a flow-
chart in Fig. 4. At each spatial location, we start with the time
series of the observations as well as the time series of all
model ensemble members pooled together over the historical
period. The cumulative distribution function of the observa-
tions is fitted to a monotonic cubic spline (Fritsch and Carlson
1980), which is used for QM bias correcting nonextreme
values. Additionally, the observed block maxima are fit to a

GEV using L-moments, which is used for QM bias correcting
extremes. We estimate the uncertainty in the three fitted
GEV parameters (location, scale, and shape) using the para-
metric Monte Carlo approach of Kyselý (2008) with 100
simulations. This yields a distribution of GEV parameters es-
timated from observed extremes. For each model data point
that falls outside of the observed distribution, we randomly
pick values of the location, scale, and shape parameters con-
sistent with the Monte Carlo parameter distributions and use
the resultant GEV to provide an estimate of observed values
that are more extreme than can be found in the available
observations.

Bias correction over the future period is unchanged from
LOCA version 1, which uses the PresRat scheme (Pierce et al.
2015). Briefly, the model-predicted future change ratio (i.e.,
future value/historical value) is calculated in quantiles, then
applied to the bias corrected historical value at each quantile.
This preserves the ratio of model calculated future changes by
quantile, hence the name PresRat. The windowing approach,
frequency-dependent bias correction, and correction of wet
day fraction are unchanged from version 1 and described in
Pierce et al. (2015).

Example results from the LOCA2 downscaled data over
the historical period are illustrated in Fig. 5, which shows
extreme value plots of daily precipitation at the 16 airport
locations across the continental United States shown in
Fig. 2 and Table 1. At each location, results from one ran-
domly selected (without replacement) CMIP6 model with
multiple ensemble members are shown. The goal of the en-
semble bias correction is to avoid a fixed maximum value
of precipitation across all the ensemble members. Figure 5
shows that this goal is largely achieved, with the LOCA2
extreme values for most locations increasing as one would
expect given the best-fit GEV (red line) and the uncer-
tainty of the fit (dashed green lines show the 95% confi-
dence interval). ACCESS-ESM1-5 at Miami (MIA), which
has 5 ensemble members, shows the most divergence of ex-
treme values from the expected range, so agreement with
the expectation from the GEV is not complete. Other mod-
els show similar shortfalls in the most extreme values at
MIA; we speculate this may be due to deficiencies in the
simulation of strong hurricanes in the CMIP6 models. On
the other hand, both CESM2-LENS and IPSL-CM6A-LR
have 10 ensemble members and agree well with the best-fit
GEVs at Fargo, North Dakota (FAR), and Boise, Idaho
(BOI), respectively. It is difficult to separate out the effects
of sampling and natural variability on the results at these
extreme values, which fall at about the 1 day in several cen-
turies level and are subject to considerable uncertainty.
One advantage of the LOCA version 2 approach of down-
scaling up to 10 ensemble members per model is that this
provides more samples of rare events for models that pro-
vided multiple ensemble members, which reduces sampling
uncertainty compared to only having one ensemble mem-
ber available. In any event, Fig. 5 shows that the ensemble
bias correction avoids having all of a model’s ensemble
members exhibit the same maximum value, and so does
not give a physically unrealistic projection.
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d. Observational data errors and extreme
precipitation limits

Station observations occasionally have errors that lead to un-
realistic GEV fits in the ensemble bias correction approach,
producing unrealistic extremes in the downscaled result. As an
example, on 3 May 1980 a total of 656 mm of precipitation is re-
ported in Sinaloa, Mexico (26.788N, 109.418W). We deem it an
error since it is more than an order of magnitude larger than
the second largest May precipitation value and the surrounding
locations were dry on that day. Although we addressed this in-
stance by setting the value to zero, a more general guard against
such observational errors is needed, especially where erroneous
values in the observational record are less readily apparent.

To address this issue, we implement a spatially varying limit
on extreme daily precipitation values (Fig. 6), while being sen-
sitive to ensuring that actual extreme precipitation values are
not inadvertently discarded. The top panel shows the maxi-
mum value of precipitation from the training data for refer-
ence. Models can have up to 10 ensemble members run
over the period 1950–2100, yielding 1500 years of data, and up
to three different emissions scenarios, potentially giving
4500 years of data for a model. This motivated using the esti-
mated 5000-yr return value, derived from the GEV parameter
fitting described above, as the basis of the mask (middle
panel). Sampling variability and uncertainty in GEV parame-
ter fitting produces a spatially noisy mask, which needs to be

FIG. 4. Flowchart of the LOCA procedure for constructing the bias corrected and GEV extrapo-
lated extreme model values illustrated in Fig. 5.
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smoothed. As a simple approach we applied a Gaussian
spatial smoother with a 2s radius length scale of 167 km
(;28 grid cells) east of 1138W and 50 km (;8 grid cells) west
of 1158W. The smaller radius in the western United States
avoids smoothing away the high return values in the Sierra
Nevada and generally acknowledges the impact of highly vari-
able topography on extreme precipitation in the western part
of the country. Between 1138 and 1158W, the smoothing radius
was linearly switched between the two endpoints. Smoothing

decreases the peak return values, so to restore them we multi-
plied the final field by 2.5, a value selected to allow only 1% of
the grid cells to have a maximum mask value less than the
5000-yr return value. The final result (bottom panel of Fig. 6)
shows the limits are largest in hurricane prone areas along the
Atlantic coast and Gulf of Mexico, as well in the Sierra
Nevada and Baja Peninsula. This approach produces a practi-
cal mask for erroneous observations that could otherwise bias
extreme precipitation solutions in the downscaled data.

FIG. 5. Extreme value plots of maximum daily precipitation over the historical period (1950–2014) from LOCA version 2 at the
16 stations shown in Fig. 2. Panels are arranged roughly geographically. The inset axis shows the return period (years). For each station,
results from one randomly selected model (without repeats) that has multiple ensemble members are shown; the number of ensemble
members is shown in the title. The red line is the best-fit GEV, and the dashed green lines are the limits of the 95% confidence interval of
the fitted GEV.
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e. CMIP6 models

Data from the latest version of the international ESM ar-
chive, CMIP6, are used as the source data to be statistically
downscaled with LOCA version 2. This includes far more
data than produced from the CMIP5 models in the LOCA

version 1 effort. LOCA version 2 contains more emissions
scenarios, which have been reconfigured as shared socioeco-
nomic pathways (SSPs; O’Neill et al. 2014, 2016; Riahi et al.
2017); up to 10 ensemble members for SSPs 245, 370, and 585
were downscaled (roughly, medium, medium-high, and high
emissions scenarios). LOCA version 1 included data from one
ensemble member for 32 CMIP5 models, while LOCA ver-
sion 2 includes data from 27 CMIP6 models. This reduction in
the number of models arises because the GCM data necessary
for our downscaling objectives, which is future projections
tied to specific emissions scenarios (SSP245, 370, or 585) are
not required experiments for inclusion in CMIP6. The full set
of GCMs, SSPs, and ensemble members included in LOCA
version 2 is shown in Table 2. It includes all GCMs that were
available to us with the required data as of mid-2021. Counting
each combination of model, experiment (SSP), and ensemble
member as a separate run, there are a total of 329 runs, consti-
tuting 26026 years of model data.

3. Results

Multimodel ensemble average (MMEA) projected changes in
the 5-yr return value of daily precipitation are shown in Fig. 7.
Here and below the MMEA is calculated by first averaging the
projected changes across all the ensemble members with the tar-
get SSP for each model, then averaging across the models. This
gives each model the same weight in the final result. Only loca-
tions where at least two-thirds of the models agree on the sign of
the projected change are shown in color. Recent work has sug-
gested that pooling data across all model ensembles may give
more robust estimates of future changes in precipitation inten-
sity, duration, and frequency than the more traditional MMEA
approach used here (Srivastava et al. 2021) but this approach
was not implemented in the current work.

Most of the changes in precipitation extremes are positive,
though results vary somewhat across seasons and location. Gen-
erally, winter increases of 10%–30% in 5-yr daily extremes are
seen across most of the CONUS and Canada. The exception is in
Mexico (MX), Arizona (AZ), New Mexico (NM), and parts of
West Texas, which show little to no increase in the 5-yr return
value. Decreases are seen in central Mexico. The latter “dry” re-
gion intensifies and expands in the spring, with parts of Mexico
showing a greater than 40% decline in 5-yr return value. Pro-
jected changes are the smallest in summer and show least agree-
ment across models in sign of the change, with weak indications
of lower return values over the lower Colorado River basin and
parts of Northern California. New England (the states of Maine,
New Hampshire, Vermont, Massachusetts, Rhode Island, and
Connecticut) is the exception to the summer result, showing
model-consistent increases in all seasons. The annual change
shows no consistent sign (positive or negative) across the
models in AZ, NM, and MX, and 10%–20% increases across
the rest of the domain.

Changes in the 50-yr return value in daily precipitation,
shown in Fig. 8, generally amplify the increases found for the
5-yr return period. In comparison to the 5-yr return value
(Fig. 7), there is less model agreement on the winter decrease
in MX and AZ, although some values are still weakly

FIG. 6. (top) All-time maximum daily precipitation (mm) from
the Pierce et al. (2021) dataset, 1950–2014. (middle) Estimated
5000-yr return value of maximum daily precipitation. (bottom) Fi-
nal maximum precipitation mask. See text for construction details.
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TABLE 2. CMIP6 model, experiment (emissions scenario), and ensemble members that were downscaled with LOCA version 2.

1 ACCESS-CM2 historical r1i1p1f1, r2i1p1f1, r3i1p1f1
2 ACCESS-CM2 ssp245 r1i1p1f1, r2i1p1f1, r3i1p1f1
3 ACCESS-CM2 ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1
4 ACCESS-CM2 ssp585 r1i1p1f1, r2i1p1f1, r3i1p1f1
5 ACCESS-ESM1-5 historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
6 ACCESS-ESM1-5 ssp245 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
7 ACCESS-ESM1-5 ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
8 ACCESS-ESM1-5 ssp585 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
9 AWI-CM-1-1-MR historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1

10 AWI-CM-1-1-MR ssp245 r1i1p1f1
11 AWI-CM-1-1-MR ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
12 AWI-CM-1-1-MR ssp585 r1i1p1f1
13 BCC-CSM2-MR historical r1i1p1f1
14 BCC-CSM2-MR ssp245 r1i1p1f1
15 BCC-CSM2-MR ssp370 r1i1p1f1
16 BCC-CSM2-MR ssp585 r1i1p1f1
17 CESM2-LENS historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1,

r9i1p1f1, r10i1p1f1
18 CESM2-LENS ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1,

r9i1p1f1, r10i1p1f1
19 CNRM-CM6-1 historical r1i1p1f2
20 CNRM-CM6-1 ssp245 r1i1p1f2
21 CNRM-CM6-1 ssp370 r1i1p1f2
22 CNRM-CM6-1 ssp585 r1i1p1f2
23 CNRM-CM6-1-HR historical r1i1p1f2
24 CNRM-CM6-1-HR ssp585 r1i1p1f2
25 CNRM-ESM2-1 historical r1i1p1f2
26 CNRM-ESM2-1 ssp245 r1i1p1f2
27 CNRM-ESM2-1 ssp370 r1i1p1f2
28 CNRM-ESM2-1 ssp585 r1i1p1f2
29 CanESM5 historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1
30 CanESM5 ssp245 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1
31 CanESM5 ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1
32 CanESM5 ssp585 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1
33 EC-Earth3 historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1
34 EC-Earth3 ssp245 r1i1p1f1, r2i1p1f1, r4i1p1f1
35 EC-Earth3 ssp370 r1i1p1f1, r4i1p1f1
36 EC-Earth3 ssp585 r1i1p1f1, r3i1p1f1, r4i1p1f1
37 EC-Earth3-Veg historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
38 EC-Earth3-Veg ssp245 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
39 EC-Earth3-Veg ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1
40 EC-Earth3-Veg ssp585 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1
41 FGOALS-g3 historical r1i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
42 FGOALS-g3 ssp245 r1i1p1f1, r3i1p1f1, r4i1p1f1
43 FGOALS-g3 ssp370 r1i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
44 FGOALS-g3 ssp585 r1i1p1f1, r3i1p1f1, r4i1p1f1
45 GFDL-CM4 historical r1i1p1f1
46 GFDL-CM4 ssp245 r1i1p1f1
47 GFDL-CM4 ssp585 r1i1p1f1
48 GFDL-ESM4 historical r1i1p1f1
49 GFDL-ESM4 ssp245 r1i1p1f1
50 GFDL-ESM4 ssp370 r1i1p1f1
51 GFDL-ESM4 ssp585 r1i1p1f1
52 HadGEM3-GC31-LL historical r1i1p1f3, r2i1p1f3, r3i1p1f3
53 HadGEM3-GC31-LL ssp245 r1i1p1f3
54 HadGEM3-GC31-LL ssp585 r1i1p1f3, r2i1p1f3, r3i1p1f3
55 HadGEM3-GC31-MM historical r1i1p1f3, r2i1p1f3
56 HadGEM3-GC31-MM ssp585 r1i1p1f3, r2i1p1f3
57 INM-CM4-8 historical r1i1p1f1
58 INM-CM4-8 ssp245 r1i1p1f1
59 INM-CM4-8 ssp370 r1i1p1f1
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negative. Fifty-year daily extremes also increase more over
the rest of the CONUS and Canada than 5-yr extremes, al-
though the differences are modest. Parts of the upper Mid-
west show increases of over 30% in winter and spring, which
has serious implications for flooding in the region. Annual
changes are more broadly distributed, with increases of 10%–

20% widely spread across most of the CONUS and Canada.
The model consistency in projected increases in summer pre-
cipitation is again seen in New England.

Changes across season, SSP, location, and return value are
summarized in Fig. 9, which shows MMEA projected change
in return values by the end of the century (2075–2100 with

respect to 1950–2014). The top row (solid lines) shows the
spatial average across the north-central tier of the domain, in-
cluding Canada and the CONUS except for NM and AZ. The
greatest changes with respect to how extreme the return value
is (from 5 to 50 to 500 years, moving from the top-left to the
top-right panel) are found in the summer months (June–Au-
gust). Little change in JJA 5-yr return value is found in any
SSP (top-left panel), and what changes are found are not sig-
nificantly different from zero given the spread across model
results (vertical bars to the right of each panel). This is unlike
the other three seasons, which show a consistent increase in
5-yr return values as the emissions scenario becomes more

TABLE 2. (Continued)

60 INM-CM4-8 ssp585 r1i1p1f1
61 INM-CM5-0 historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
62 INM-CM5-0 ssp245 r1i1p1f1
63 INM-CM5-0 ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
64 INM-CM5-0 ssp585 r1i1p1f1
65 IPSL-CM6A-LR historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1,

r9i1p1f1, r10i1p1f1
66 IPSL-CM6A-LR ssp245 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
67 IPSL-CM6A-LR ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1,

r9i1p1f1, r10i1p1f1
68 IPSL-CM6A-LR ssp585 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1
69 KACE-1-0-G historical r1i1p1f1, r2i1p1f1, r3i1p1f1
70 KACE-1-0-G ssp245 r1i1p1f1, r2i1p1f1, r3i1p1f1
71 KACE-1-0-G ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1
72 KACE-1-0-G ssp585 r1i1p1f1, r2i1p1f1, r3i1p1f1
73 MIROC6 historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
74 MIROC6 ssp245 r1i1p1f1, r2i1p1f1, r3i1p1f1
75 MIROC6 ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1
76 MIROC6 ssp585 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
77 MPI-ESM1-2-HR historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1,

r9i1p1f1, r10i1p1f1
78 MPI-ESM1-2-HR ssp245 r1i1p1f1, r2i1p1f1
79 MPI-ESM1-2-HR ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1,

r9i1p1f1, r10i1p1f1
80 MPI-ESM1-2-HR ssp585 r1i1p1f1, r2i1p1f1
81 MPI-ESM1-2-LR historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1,

r10i1p1f1
82 MPI-ESM1-2-LR ssp245 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1,

r10i1p1f1
83 MPI-ESM1-2-LR ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r7i1p1f1, r8i1p1f1, r10i1p1f1
84 MPI-ESM1-2-LR ssp585 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1,

r10i1p1f1
85 MRI-ESM2-0 historical r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
86 MRI-ESM2-0 ssp245 r1i1p1f1
87 MRI-ESM2-0 ssp370 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1
88 MRI-ESM2-0 ssp585 r1i1p1f1
89 NorESM2-LM historical r1i1p1f1, r2i1p1f1, r3i1p1f1
90 NorESM2-LM ssp245 r1i1p1f1, r2i1p1f1, r3i1p1f1
91 NorESM2-LM ssp370 r1i1p1f1
92 NorESM2-LM ssp585 r1i1p1f1
93 NorESM2-MM historical r1i1p1f1, r2i1p1f1
94 NorESM2-MM ssp245 r1i1p1f1, r2i1p1f1
95 NorESM2-MM ssp370 r1i1p1f1
96 NorESM2-MM ssp585 r1i1p1f1
97 TaiESM1 historical r1i1p1f1
98 TaiESM1 ssp245 r1i1p1f1
99 TaiESM1 ssp370 r1i1p1f1
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extreme, with all changes different from zero. Increases are
greatest in winter (December–February), which may be of
particular importance where flooding is most likely in winter,
such as on the west coast.

Moving from the 5- to 50- to 500-yr return values (top-left
panel to top-right panel of Fig. 9), summer is again the outlier,
showing a much stronger increase at progressively longer re-
turn periods than is found in the other seasons. At the longest
return period examined here, 500 years, the summer increase
in extreme values is roughly 20%, overlapping with the spring
increases given the uncertainties. Ignoring summer for the
moment, the other three seasons show relatively uniform in-
creases as the emissions scenario increases from SSP 245 to
585 and as the return period increases from 5 to 500 years.

Extreme increases are the largest in winter in all cases (i.e.,
across the different return periods and SSPs), ranging from
about 17% for the 5-yr return value under emissions scenario
SSP245 to almost 40% for the 500-yr return value in SSP585.

Given that the projected winter increases in the 50-yr re-
turn value of daily precipitation are about 25% for the middle
emissions scenario considered here, SSP 370, locations where
winter flooding is a concern are under considerable threat for
increased incidence of damaging floods in coming decades.
Even the lowest scenario considered here (SSP 245) shows in-
creases of 18% by the end of this century.

A different picture is found in the southern part of the
domain (Mexico, AZ, and NM; middle row of Fig. 9, dashed
lines). At the less extreme (5-yr) return values, strong decreases

FIG. 7. Multimodel ensemble average projected
change (%) in the 5-yr return value of daily pre-
cipitation from the historical period of 1950–2014
to 2075–2100, using SSP 370. From top left, panels
show the result in winter (December–February),
spring (March–May), summer (June–August),
autumn (September–November), and annually.
Only locations where at least 2/3 of the models
agree on the sign of the change are colored.
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are found in spring (March–May), and weak decreases that
overlap with zero in DJF and JJA. In this part of the domain
the only consistent increases in extreme daily precipitation are
found in autumn (September–November), when changes are
much more consistent across the domain (top row of Fig. 9 ver-
sus bottom row), unlike what is found in the other seasons. At
progressively longer return periods (from 5 to 500 years, middle
left to middle right) the changes in daily precipitation extremes
become larger, until all changes are positive at the 500-yr return
value (middle right), although summer changes are not distinct
from zero given the uncertainty. Winter shows the largest in-
creases in the northern part of the domain, but autumn shows
the largest increase in the southern part with increases ranging
from 10% (5-yr return value, SSP 245) to 40% (500-yr return
value, SSP 585).

Finally, as noted above, New England (bottom row of
Fig. 9) shows a consistent increase in extremes across all sea-
sons including summer, unlike most of the domain. Addition-
ally, at the 500-yr return period New England is projected to
experience the largest seasonal increases primarily in summer,
unlike the other regions where the increases across seasons
are smallest in summer.

a. Change in return period for a given event

Up to now we have focused on the change in value at a
given return period. Since the design of water management
infrastructure is often informed by return values at specified
return periods, these return value changes indicate how future
infrastructure designs might be affected by climate change. A
complementary approach is to examine how often a historically

FIG. 8. As in Fig. 7, but for the 50-yr
return value of daily precipitation.
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extreme event will occur in the future, which has relevance for
understanding how existing infrastructure that was designed
using historically applicable return values might be stressed by
future climate changes.

The estimated future return period (years) for the histori-
cally defined 100-yr return value of daily precipitation at each
point is shown in Fig. 10 as a function of time horizon (col-
umns) and SSP (rows). Values are calculated as the median
across all model ensemble averages that were run for the indi-
cated SSP. Although noisy, a consistent pattern is seen with
the most pronounced increases in frequency in the eastern
half of the continent, particularly the southeastern United
States and eastern Canada, and in the Pacific Northwest. By
the end of this century over much of the southeastern United
States, a daily precipitation event that historically recurred
only about once a century is projected to become much more
frequent, with return periods of 30–40 years depending on the

emissions scenario. Changes of this magnitude will have seri-
ous implications for the reliability or operations of historical
water management infrastructure.

Mild increases in return period are seen in the early period
(2015–44) over AZ, NM, and parts of MX. These increases
mostly disappear by midcentury and have reversed in sign
(indicating the more frequent occurrence of historically ex-
treme events) by the end of this century, especially at SSPs
370 and 585.

b. Changes in the distribution of daily precipitation

Our results have shown that the models project a wide-
spread increase in daily precipitation extremes, especially out-
side of MX, AZ, and NM, with increases larger as the century
progresses and at higher emissions levels (SSPs). Are these
increases in the extremes simply a manifestation of overall in-
creases in precipitation across a range of magnitudes, or are

FIG. 9. (top) Solid lines are MMEA projected change (%) in 5-, 50-, and 500-yr return values of daily precipitation as a function of SSP
(x axis) averaged over Canada and the CONUS exclusive of AZ and NM. Different colored lines are shown for each season, as indicated
by the legend. (middle) As in the top row, but dashed lines are averaged over MX, AZ, and NM. (bottom) As in the top row, but dash–
dot lines are averaged over New England (Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut). Changes
are calculated from the historical period of 1950–2014 to 2075–2100. The vertical bars to the right of the panels show the interquartile
ranges across the models for each season as a measure of uncertainty.
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they part of a more complicated change in the distribution of
daily precipitation values?

Projected changes (2075–2100, SSP 370) in the number of
wet days that fall in historically defined percentile bins of wet
day precipitation amounts are shown in Fig. 11. There are
strong increases in the number of days of the most extreme
precipitation (99.9th percentile), typically by a factor of 1.5–3,
at all stations except Miami (MIA). Notably, the number of
extreme precipitation days is projected to increase even for
the southern tier of stations, where annually averaged precipi-
tation and the fraction of wet days are both projected to de-
crease. Therefore, the increases in extremes are not a simple
manifestation of generally increasing precipitation. Looking
at the changes in detail, at almost all stations the increase in
extreme days is accompanied by a decrease in low-to-mid-
percentile wet days (25th–75th percentile). This is seen even
at stations with an overall increase in annually averaged pre-
cipitation. For example, at Seattle (SEA), annually averaged
precipitation is projected to increase by about 5%, but two-

thirds of the models agree that the number of wet days in the
(historically defined) 25th–75th percentiles decrease, and
overall the fraction of wet days decreases by 5% as well. Simi-
lar decreases in wet days accompanied by increases in the wet-
test days have been shown to be important in understanding
projected precipitation changes in California (Pierce et al.
2013a; Polade et al. 2017). The present results show the shift
to fewer low-precipitation days and more high-precipitation
days occurs across the entire CONUS.

c. Changes in storm characteristics

Another question of interest is how storms might change in
the future. For instance, will intense precipitation storms be-
come larger or last longer? A straightforward way of evaluat-
ing this is by selecting days when precipitation at a station is
extreme (in the 99.9th percentile of historical wet days), which
we call storm days, and examining how extensive precipitation
is in the surrounding region, and how long the extreme pre-
cipitation lasts before and after the storm day. For example,

FIG. 10. Future return period (years) for the historical (1950–2014) 100-yr return value of daily precipitation. For example, the red cross
over Tennessee in the bottom-right panel shows that a daily precipitation event that was a 100-yr return value in the historical era would
be expected to occur about every 30 years by 2075–2100 under SSP 585. Displayed values are the median across all models that have at
least one run of the indicated SSP.
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FIG. 11. Model-projected changes (factor) in the number of days with precipitation falling in historically defined wet-day percentile bins
at the 16 stations illustrated in Fig. 2, calculated for the end of this century (2075–2100) using SSP 370. Panels are arranged roughly geo-
graphically. The box and whiskers illustrate the mean, interquartile range, 5%–95% confidence interval, and extremes (dots) of the
distribution of projected changes across models and ensemble members. Teal indicates more than 2/3 of the models agree the
change is .1 (wetter), and magenta indicates more than 2/3 of the models agree the change is ,1 (drier). Gray indicates lack of
agreement across the models on the sign of the change. The blue box at the left shows the change (factor) in number of wet days
per year. The notations show the change in annual mean precipitation (DP) and fraction of wet days (DFwet) at the station, with val-
ues in teal showing model agreement on increases and magenta showing model agreement on decreases.
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Fig. 12 shows the multimodel ensemble average precipitation
on storm days in the region around Seattle (left panel) and
Las Vegas, Nevada (LAS; right panel). Since precipitation is
strongly affected by topography, values are presented as per-
centiles normalized to the historical distribution at each grid
cell. This allows values to be more sensibly compared across
the domain. Since there are considerably more wet days at
Seattle than Las Vegas, more extreme values are seen at Seattle.
Additionally, Seattle shows a distinct southwest-to-northeast
pattern associated with atmospheric rivers, which are the
primary source of heavy precipitation events in this region
(Ralph et al. 2014). Averaged over the regions shown, val-
ues are much larger for Seattle, where storm days are associ-
ated with extreme precipitation over almost the entire region.
By contrast, storm days at Las Vegas often take the form of
convective systems with more regionally confined precipitation
patterns.

Constructing these maps for all extreme precipitation
events at all 16 stations allows us to see how the return period
(1/frequency, in wet days) averaged over the region varies as
a function of location, future period, and time offset with
respect to the storm day (Fig. 13). Larger values indicate
storms with more extreme precipitation. The substantial dif-
ferences between the storm day historical value at different
stations (e.g., 1200 for SEA versus 150 for LAS) are due to
the effects already described in Fig. 12, with some locations
characterized by extreme days where precipitation is wide-
spread and others where precipitation is more localized.
There are also differences in how storm characteristics change
in the future. At locations such as Boise; San Francisco,
California; and San Diego, California, there are substantial

future increases in storm intensity that extend to the day before
and after the storm day. By contrast, many of the interior sta-
tions show little to no changes in the day before or after the
storm day. A few stations, such as Billings, Montana, and
Boston, Massachusetts, show less change with future period
than found at most other stations.

d. Extreme precipitation compared to LOCA version 1

The better depiction of daily precipitation extremes in
LOCA version 2 arises from the improved training data and
ensemble bias correction approach. The relative contribution
of these two is examined in Fig. 14, which shows the 20-yr re-
turn value of daily precipitation from 6 datasets. The top-left
panel shows return values calculated directly from daily station
data in the Global Historical Climatology Network (GHCNd;
Menne et al. 2012). Gridding the 20-yr return values from the
stations yields a mean over the CONUS of 97.8 mm day21

(top right). Directly gridding the station return values gives a
better representation of station-based data than is found by
gridding the daily data and calculating the 20-yr return values
from the gridded daily data (e.g., Risser et al. 2021). Essen-
tially, gridding the daily data reduces long-period extremes by
combining values from multiple stations when in unobserved
locations between stations. Since surrounding stations do not
always have their extreme precipitation values fall on the
same day, extreme values from one station tend to be diluted
by nonextreme values from other nearby stations.

Compared to the directly gridded station return values, L15
(middle left) is weaker along coastal regions of the eastern half
of the United States, with a mean of 69.3 mm day21, 29% less
than the directly gridded return values. Pierce et al. (2021)

FIG. 12. Multimodel ensemble average precipitation composited on days when precipitation is $99.9th percentile
of wet days at the indicated station location. Precipitation values are individually normalized at each grid cell to show
the local wet day percentile. The panel title shows the total number of extreme wet day events contributing to the
composite.
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(middle right) fares better, capturing some of the higher coastal
values, but still has a mean 18% less than the gridded stations.
As discussed in Pierce et al. (2021), not splitting precipitation
observations across days ameliorates the reduction in extremes
found in L15, but the gridding process still reduces the return
values.

The next steps after constructing the training dataset are
bias correction and statistical downscaling. The MMEA result
from the LOCA version 1 downscaled data (CMIP5; lower
left) has a mean 20-yr return value another 9 percentage
points lower than the L15 training data used in that work,
while LOCA version 2 (CMIP6, lower right) has a mean 6
percentage points less than the Pierce et al. (2021) training
data used here.

To summarize, the biggest factor in reducing extremes com-
pared to return values calculated directly from the station
data is the gridding process when creating the daily training
dataset. Second, not splitting observations across days reduces
the error by about a third [29% reduction in L15 versus 18%

reduction in Pierce et al. (2021)]. Finally, the ensemble bias
correction approach results in less error from the bias correc-
tion step, by about one-third compared to the original ap-
proach, since in LOCA version 1 the bias correction step
reduced extremes by 9 percentage points while in LOCA ver-
sion 2 the bias correction step reduces extremes by only 6 per-
centage points. However, the errors introduced by the bias
correction are considerably smaller than those arising from the
training data gridding process. Overall, updates to the extreme
precipitation estimates in LOCA2 suggest that end-users who
developed analyses based on the older LOCA-CMIP5 data
might find it useful to update their calculations to reflect the
higher LOCA2-CMIP6 values.

4. Discussion

The ensemble bias correction approach used here is useful
but not a panacea for the problem of bias correcting precipita-
tion extremes in a heterogenous dataset with a variable number

FIG. 13. Multimodel ensemble wet day return period (1/frequency; days) averaged over a box 630 grid cells (;134 000 km2) centered
on the station indicated in the panel title. Panels are arranged roughly geographically. Values are averaged over all storm events where
the center station grid cell experienced at least a 99.9th percentile wet day. The x axis shows the time evolution of the area-averaged wet
day return period in the three days leading up to the storm, the day of the storm (offset 5 0), and the three days after the storm. As per
the legend, the dark blue curve is for the historical period, light blue is 2015–44, orange is 2045–74, and the magenta is 2075–2100, all for
SSP 370. Although each period has a different number of events, the average number (N) across all periods is shown on each panel.
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of ensemble members per model. First, since every model has
its own biases (e.g., Fig. 1) it is not obvious how one could com-
bine data from all the models together into one coherent distri-
bution. A model with one ensemble member could have an
unusually large extreme value because of biases, or because the
model has realistic extremes but the one ensemble member
available just happened to have an exceedingly rare high precip-
itation value. Second, the varying number of ensemble mem-
bers across models means that the rarest precipitation values
are more likely to be found in models with many ensemble
members simply because the pool of data is larger. This is not a
consequence of the ensemble bias correction approach but
rather is a characteristic of the CMIP6 dataset itself, since there
is a greater chance of finding rare extreme values in a model
that provides 10 ensemble members than in a model that
provides only 1 ensemble member. Ensemble bias correction

preserves this characteristic, which is realistic but nonetheless
different from the results that would have been obtained with a
nonensemble bias correction approach. The upshot is that prac-
titioners may want to consider how model selection for an ap-
plication involving precipitation extremes will be influenced by
the number of ensemble members available and the likelihood
of finding extreme values in a model that provides more data to
analyze.

The overall portrait of extreme precipitation day changes
described here exhibits increased extremes over much of
North America but with variability across season, location,
time horizon, and emissions scenario. This variability must be
considered in anticipating how a specific location will be af-
fected by climate change. However, projected increases in
extreme day precipitation are substantial over most of the
CONUS and Canada, lending credence to the concern that

FIG. 14. The 20-yr return value (mm day21) of daily precipitation over the CONUS for six datasets. (top left) 3662
GHCN stations. (top right) the GHCN station data gridded to the LOCA grid. (middle left) L15. (middle right)
Pierce et al. (2021). (bottom left) Multimodel ensemble average (MMEA) 20-yr return value from LOCA version 1
(CMIP5). (bottom right) MMEA from LOCA version 2 (CMIP6).
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these changes will pose a challenge for managing water infra-
structure for flood mitigation. Furthermore, the ensemble
bias correction methodology used here does a better job at
representing those extremes than a nonensemble approach
where all maxima are set to the same value, giving practition-
ers a useful tool when trying to mitigate potential water man-
agement problems arising from the increases in extreme day
precipitation.

As an example of challenges that might be faced at individ-
ual locations, multimodel ensemble average projected 50-yr
return values of daily precipitation at the 16 stations illus-
trated in Fig. 2 are given in Table 3 for the historical period,
midcentury, and end of this century under SSP 370. At most
locations the projected increases are substantial, for example,
an increase from 113 to 132 mm at Chicago, Illinois, or 104 to
120 mm at Atlanta, Georgia, by end of century. Although the
general sense of increase is consistent across the stations,
there are significant uncertainties associated with these esti-
mates, as shown by the values in the parentheses, which give
the 95% confidence interval. Even the midcentury increases
under this middle emissions scenario (of the three we consid-
ered) are substantial enough to change the probably of flood-
ing at many locations across the CONUS, indicating that
existing water management infrastructure designed using his-
torical conditions may not perform well in future decades.

The current version of bias correction outlined here does
not take into account nonstationarity over the observed histor-
ical period when fitting observed extremes. As climate changes
become stronger over time, this will become a progressively
less appropriate assumption that should be revisited, for exam-
ple by fitting the observations to extreme value distributions
with time-dependent parameters as in Risser et al. (2021).

5. Conclusions

Future changes in extreme daily precipitation are a key as-
pect of climate change, with applications to flood preparedness

and water management infrastructure. This information is avail-
able from numerous models in the CMIP6 archive at coarse res-
olution, but many practitioners require more localized climate
projections and furthermore may rely upon calibrated impact
or operations models that require bias-corrected input.

Using the localized constructed analogs (LOCA) statistical
downscaling method, we have downscaled data from 27 mod-
els, up to 10 ensemble members each, covering SSPs 245, 370,
and 585 (329 runs total, where each run is a combination of
model/ensemble/SSP). Compared to the version of LOCA
used to downscale the CMIP5 models (Pierce et al. 2014), the
new effort incorporates ensemble bias correction to better
capture daily precipitation extremes and uses an improved
daily precipitation training dataset (Pierce et al. 2021) that it-
self better represents observed precipitation extremes. To-
gether, these improvements give a better representation of
daily precipitation extremes in the downscaled data, although
our analysis also points to the need for improved methods of
gridding daily station observations that preserve the magni-
tude of rare precipitation events.

The downscaled data show increasing precipitation extremes
across much of the CONUS and Canada, although details vary
across location, season, and rarity of the precipitation event. In
general, 20%–30% increases in winter, spring, and autumn 5- to
500-yr return values of daily precipitation are seen in Canada
and the CONUS exclusive of Arizona and New Mexico. Both
projected increases and model agreement on the sign of the pro-
jected change are greatest in winter (DJF), which will be prob-
lematic in locations where flooding is historically worst in winter,
particularly since damage increases exponentially as precipita-
tion amounts and runoff increase (Corringham et al. 2019). On
the other hand, since many locations exhibit a tendency toward
fewer wet days and a drop in the frequency of days with lighter
precipitation amounts, the increase in frequency and magnitude
of relatively infrequent heavy precipitation days can provide a
vital counteracting boost to water supplies. Summer is the most
complicated season, with little projected change in 5-yr return

TABLE 3. Multimodel ensemble average 50-year return value of daily precipitation (mm day21) for the 16 stations over the
historical period, midcentury, and end of century for the SSP 370 emissions scenario. The estimated 95% confidence interval is given
in parentheses.

Station Historical (1950–2014) 2045–74 2075–2100

ATL 104.2 (87.3–125.5) 122.8 (89.9–170.9) 120.0 (90.4–162.2)
BIL 65.5 (48.6–89.7) 74.2 (46.5–118.9) 79.1 (48.8–126.7)
BOI 32.6 (26.5–40.7) 37.2 (26.4–53.8) 38.0 (27.0–55.2)
BOS 131.0 (101.2–172.9) 151.2 (101.7–228.9) 154.5 (104.7–231.1)
CHI 113.3 (88.7–146.3) 128.0 (87.9–188.1) 131.8 (89.1–197.1)
DCA 144.3 (103.4–204.8) 162.4 (102.1–259.8) 166.8 (104.4–269.2)
DEN 65.2 (52.1–81.9) 68.1 (49.5–93.9) 70.5 (50.9–99.4)
DFW 144.4 (111.2–190.5) 162.9 (107.7–249.3) 167.9 (109.2–259.4)
ELP 53.2 (42.8–66.1) 56.0 (39.3–80.6) 56.8 (38.2–85.0)
FAR 79.6 (66.5–95.9) 85.1 (64.0–114.7) 89.6 (65.0–126.1)
LAS 35.7 (29.3–43.5) 37.0 (26.8–51.9) 41.9 (28.9–61.2)
MCI 148.5 (109.8–205.2) 161.3 (102.3–255.1) 160.2 (101.1–255.3)
MIA 179.9 (137.6–237.3) 194.6 (128.9–295.9) 203.6 (126.5–327.5)
SAN 54.0 (47.5–61.1) 57.3 (46.8–70.1) 59.8 (46.6–77.2)
SEA 89.6 (66.6–123.1) 107.0 (72.1–161.5) 110.0 (74.8–163.4)
SFO 76.8 (65.3–91.3) 80.6 (62.5–105.6) 87.8 (65.2–120.2)
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values outside of New England but substantial increases in
500-yr return values across most of the CONUS. In the south-
ern part of the domain, including Mexico, Arizona, and New
Mexico, the greatest increases are seen in autumn rather than
winter, with values ranging from 10% to 30% depending on
return period. Five-year return values decline 15% in summer
but show little change at longer return periods.

These results will be useful for climate change planning and
mitigation efforts across much of North America, from central
Mexico through southern Canada. With its greater number of
projections, the new, CMIP6 version of the downscaled data
provides useful, more accurate depictions of extreme daily
precipitation than the previous LOCA downscaled CMIP5
dataset.
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